
1

System Design Document
CosmosDB RU Cost Calculation Improvement - Efficiency & Time

Version 2.0
January 19, 2019

Team Members: Joe Do, Ferdinand Tembo, Kevin Tran
https://docs.google.com/document/d/10_VA-

ZX1XHbgyOCLrGOz1rzl38PAa6kZ7_1C6AFyq_s/edit?usp=sharing
Bellevue College - Computer Science Department

Alfred Nehme

2

Revisions Page

Version Primary Author Description of Version Date Completed

1.0 Joe Do
Ferdinand Tembo
Kevin Tran

First Draft -
Interpretation

11/07/2018

2.0 Joe Do
Ferdinand Tembo
Kevin Tran

Second Draft - Rough
Interpretation

01/19/2019

3

Table of Contents
Revisions Page 2

Table of Contents 3

1. Introduction 4
1.1 Purpose 4
1.2 Scope 4
1.3 Definitions, acronyms, and abbreviations 4
1.4 References 5

2. System Overview 5

3. System Software Architecture 6
3.1 Decomposition Description 6
3.2 Dependency Description 7
3.3 Interface Description 7
3.4 Module Interfaces 7
3.5 User Interfaces (GUI) 8

4. Detailed Design 8
4.1 Module Detailed Design 8
4.2 Data Detailed Design 9
4.3 RTM 10

4

1. Introduction
1.1 Purpose

The purpose of this document is to describe the implementation of the
Request Units (RU) calculator described in the software requirement
specification. The RU calculator is designed to capture Azure Cosmos
DB transactional throughput.

1.2 Scope

The main objective of the RU calculator is to calculate how many RUs
are needed for the consumers. Azure Cosmos DB customer will provide a
JSON document and the number of READ/CREATE/UPDATE/DELETE operations.
Our primary scope is to calculate the required RU based on those
inputs.

1.3 Definitions, acronyms, and abbreviations

Abbreviations Description

CUD Create, update, delete

CRUD Create, read, update, delete

RU Request Units

JSON (JavaScript Object Notation) is a
lightweight data-interchange
format

5

Cosmos DB Cosmos DB is Microsoft’s
proprietary globally-distributed,
multi-model database service "for
managing data at planet-scale"

GUI Graphical User Interface

Indexing Policy A structural rule in a database
that strategizes in optimizing
database commands and the
database resources (CPU usage,
I/O, ram) that they use.

1.4 References
[1] “Azure Cosmos DB Pricing.” Pricing - Azure Cosmos DB | Microsoft

Azure, azure.microsoft.com/en-us/pricing/details/cosmos-db/.

[2] “Azure Cosmos DB: NoSQL Capabilities Everyone Should Know About.”

Microsoft Azure Cloud Computing Platform & Services,
azure.microsoft.com/en-us/resources/videos/build-2017-azure-
cosmos-db-nosql-capabilities-everyone-should-know-about/.

[3] “NoSQL Databases.” Basho, basho.com/resources/nosql-databases/.

[4] Howell, Jason W, et al. “Indexing in Azure Cosmos DB.” Microsoft

Azure, Microsoft, 9 Nov. 2018, docs.microsoft.com/en-
us/azure/cosmos-db/index-overview.

2. System Overview
In a client-server architecture, we have Azure Cosmos DB as the server
side and a web client as the client side. The web client will take in
user inputs including one or more JSON files and the number of
database operations. The web client then makes a request to Azure
Cosmos DB. Based on the response header [x-ms-request-charge] received
from Azure Cosmos DB, the web client will be able to display the
appropriate Request Units to the end user(s).

6

In the server side, Azure Cosmos DB stores documents based on the
destination database and collection. Users can access their
database(s) and collection(s) if they have created it or if they have
been invited to the database account. Database accounts have
permissions ranges of limited permissions and full ownership
permission. Further backend information about that architecture is
limited.

3. System Software Architecture
Please note that this section will not stipulate the final and actual
product that we will be working on. We are currently on the testing
phase to identify product improvements. The System Software
Architecture that is currently used in testing and problem
investigation will be stipulated only in this section at this time.

3.1 Decomposition Description
The current decomposition for our testing software is that a Microsoft
Azure Document Client package and the Newtonsoft JSON package is
attached to a C# project that contains references to the .NET library.
Whenever we test and create a query request, it utilizes all of the
packages in order to provide us with the request unit amount after it
has been processed.

7

3.2 Dependency Description

The Microsoft Azure Client requires System-related C# packages and a
Newtonsoft JSON package in order for it to run correctly in our
testing custom client. The website is currently unknown.

3.3 Interface Description
There are no human or physical interfaces in any part of our
system. We only have module interfaces at this time. In terms of
testing on the website, we have a web browser and various web
page services from the RU estimator website that would provide us
with intuitive secondary RU-amount checking.

3.4 Module Interfaces
At this time the testing JSON files of any design/complexity will
work as test cases within our system. That is created by a
separate software package system. There are software interfaces
that exist between CosmosDB and us developers/users within the
testing phase. Those are .NET and the Azure CosmosDB API. The
CosmosDB API utilizes some classes and functions available in
.NET in order to build a meaningful connection between the

8

CosmosDB service in the cloud and to our computers where we give
it commands and receive output from CosmosDB. We do not know of
the specificity of the module interfaces implemented in the RU-
amount website.

3.5 User Interfaces (GUI)
There is currently no GUI for testing from the console but there
is a GUI that is used in the RU-calculator website.

We predict that the final and actual product that we will work on
will involve a GUI that is already implemented.

4. Detailed Design
4.1 Module Detailed Design
In our second part of the investigation phase of the project, we are
comparing RU output to collection index policy and outputs of stored
procedures with various argument inputs.

For collection index policy, we tested against a controlled collection
(automatic dynamic indexing), which organizes the indexes of uploaded
documents synchronously per every change (CUD of CRUD).

9

Then there is a non-indexing mode where no index is created on the
uploaded documents. Thus, all document items will be stored/accessed
index-less in a key-value type of behavior based on a trait like its
ID.

4.2 Data Detailed Design
The types of JSON data used in our tests will be of the two as
follows:

Family JSON Test Document

 _childrenSize Int size

(Ideally) Primary Key ID String id

 _lastName

 _family (Array input of below)

 _family.Parents (Array of two parents)

 _family.Parents.FirstN
ame

String

 _family.Parents.LastNa
me

String

 Children Array of children
associated to parents

 Children.FamilyName String (similar to
last name)

 Children.FirstName String

 Children.Gender String of an ‘m’ or
‘f’ character

 Children.Grade double

 Children.Pets Pets array

 Children.Pets.GivenNam String

10

e

Package JSON Test Layout

(Ideally) Primary Key Id String

 Records Array of n size in
the below format

 Records.ReceiverLastName String

 Records.ShippingAddress String

 Records.TrackingNumber Int

 Records.NumberOfItems Int

 Records.SenderFirstName String

 Records._SenderLastName String

 Records._SenderAddress String

4.3 RTM
Yellow = not applicable at this time.

Req.# Requirement Design
specification

Program
Module

Test
Specifica
tion

Test
Case(s)
Number

Successful
test
Verification

Modification
of
Requirement

Remarks

3.1 External Interfaces Utilize
Azure
Cosmos DB
NuGet
library

 Connec
t
front-
end to
Azure

1 Verified N/A For testing
phase,
install is
only
required

3.2 Functional

Requirements

3.3 Performance

Requirements
(Perceive (Perce

11

d)
Improve
RU output
accuracy

ived)
Run
tests
betwee
n old
and
new
engine
.

3.4 Logical Database

Requirements
Documents
have to
have a
unique
trait
like ID,
etc.

3.5 Design Constraints UDF: Has
to be
defined
as a
string

Stored
Procedure
cannot be
duplicate
d by its
ID; Also
can only
pass in
one
parameter
on the
server-
side

3.6 Software System

Attributes

