Design Document
WebGL Card Game Platform

Version 1.6
3/15/19
Team WebGL Game

https://docs.google.com/document/d/1JLMnEJU9RaDp TXMWtOYVJ
XVxs6VLg2dP8r2Bk2ku-8/edit

Computer Science / Bellevue College

Sara Farag

Page 1 of 26

Revisions

Version Primary Author Description of Version Date completed
1.0 Sean Hardin, Anthony Created primary version of document 11/7/18
Klobas, Jeffrey Talada
1.1 Jeffrey Talada, Sean Finalized for Milestone 1 12/4/18
Hardin
1.2 Jeffrey Talada, Anthony Updated class and dependency 1/24/19
Klobas diagrams
1.3 Anthony Klobas Updated class diagrams, dependency | 2/8/2019
diagram
1.4 Jeffrey Talada Updated class diagrams 2/20/19
1.5 Jeffrey Talada Updated traceability matrix 3/8/19
1.6 Anthony Klobas, Sean Updated database and dependency 3/15/19
Hardin, Jeffrey Talada descriptions, DFD level 2 diagram;
Added DFD level 1, Component, and
Database schema diagrams

Page 2 of 26

Table of Contents

Revisions
Table of Contents

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations
1.4 References

2. System Overview

3. System Components

3.1 Decomposition Description
3.1.1 Server
3.1.2 Client
3.2 Dependency Description
3.3 Interface Description
3.3.1 Module Interfaces
3.3.2 User Interfaces (GUI)
Login Screen
Rules Screen
Settings Screen
Game Play Layout
Game Play Area
Chat Area
Player Information Area

Settings, Rules, Game Play Button Area

4. Detailed Design

4.1 Class Diagrams
4.1.1 Full Diagram
4.1.2 Server Diagram
4.1.3 View Diagram
4.1.4 Controller Diagram
4.1.5 Model Diagram
4.2 Component Diagram
4.3 Module Detailed Design

Page 3 of 26

© © o N OO ogobs~ W N

N U QU (UL G G G G
N ~NOO O ok, WODNDNDDNDMDDN -~ O

N NDNDNDN=2 2 2
W NN - O O 00 0

4.3.1 Data-flow Diagram Level 1
3.4.2 Data-flow Diagram Level 2
4.4 Database Schema
4.5 Requirements Traceability Matrix (RTM)

Page 4 of 26

23
24
25
25

1. Introduction

1.1 Purpose

The purpose of this document is to describe how to architect an online card game, including
how to separate the particular ruleset from the GUI and the server. It is intended to help the
implementers and Sara Farag.

1.2 Scope

The current scope of our software is to build an online card gaming platform that utilizes WebGL
graphics. It will support a modular design allowing for easily updating individual functionalities,
and swapping out certain visuals or functions as a user desires. The modules we are currently
working on include basic visuals, loading assets from file, loading the game rules from file, and
functions to pass only the needed information in order for game logic to be completely separate
from display logic.

The benefits of our platform lie in the modularity. When we add new functionalities in the future,
we will only need to modify one of the existing modules, rather than keep track of all the
different parts of a full game that need to be changed.

1.3 Definitions, Acronyms and Abbreviations

e Al - artificial intelligence

e Client - The application running inside of a user's web browser that communicates with
our server to run the game

e DOM - Document object model

e FPS - Frames per second

e Fragment - Small section of a polygon to be rendered (think pixel)

e GLSL - OpenGL Shading Language

e GPU - Graphics processing unit

e |DE - Integrated Development Environment

e JS - Java Script

e MVC - Model View Controller, a common way of decoupling the code that handles
interaction, logic, and display

e Player - A person using the client to access the system

e RDBMS - Relational Database Management System

e Ul - User Interface

e User - A person using the client to access the system

e Vertex - a point at a "corner" of a polygon

Page 5 of 26

e Server - The application running the website and validation code for game play

e Shader - a program written to transform and display an object

e Z depth - the distance an object is from the observer, used for occlusion

1.4 References

Client-Server: wikipedia.org, ‘Client-server model’, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Client%E2%80%93server_model. [Accessed: 3- Dec- 2018].
Microservice: microsoft.com, ‘Microservices architecture style’, 2018. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/quide/architecture-
styles/microservices. [Accessed: 3- Dec- 2018].

MVC: mozilla.org, ‘MVC architecture’, 2018. [Online]. Available:
https://developer.mozilla.org/en-

US/docs/Web/Apps/Fundamentals/Modern_web app_architecture/MVC _architecture.
[Accessed: 3- Dec- 2018].

N-Tier: microsoft.com, ‘N-tier architecture style’, 2018. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/quide/architecture-styles/n-tier.
[Accessed: 3- Dec- 2018].

Node.js: nodejs.org, ‘About Node.js’. [Online]. Available: https://nodejs.org/en/about/.
[Accessed: 3- Dec- 2018].

Three.js: threejs.org, ‘Featured Projects’. [Online]. Available: https://threejs.org/.
[Accessed: 3- Dec- 2018].

Page 6 of 26

2. System Overview

database

Y

——3{ game client [« > server €

User

Page 7 of 26

ClieMt e 7 server

Game Server < »Game Rules

Renderer < Objects Models e—

————{User Input

Client Connection [«

User Account

Chat Player Summary “

ﬁ

..xz_oam_

Payment Validation

Game Rules D

A

i |Game Objects

i Controller

|mv<m_am$ Input

Page 8 of 26

3. System Components

Overall architecture is client-server

Client is MVC

Server is a collection of Microservices

i.e. game, chat, and payment are independent services

@)

3.1 Decomposition Description

3.1.1 Server

) iInstance

Game Server

Game Rules

A
A4

' |client Connection |

User Account

Database

Payment Validation

e A client will connect to the server through the Client Connection

o The Server then spawns a Game Server and connects it to the client through the
Client Connection

e A client may maintain a User Account while connected to the Server

o User Account information is stored in a Database

o The Game Server spawns a copy of the desired Game Rules

o Game Server broadcasts game updates to each player’s client through Client

Connection

e Game Rules validates a client’s actions

Page 9 of 26

3.1.2 Client

A

Renderer

(_i_ User Input

Objects Models <«
Chat Player Summary '

" Model

Game Objects < Game Rules

smmmccccccccccccccccccccccccefeccccccccccccccccay

. Controller

“——!Validate Input

Y
-
o
Q
o
4]
[92]
4]
<
(1]
-

e When the client is connected to a Game Server the Games Rules are updated by the
Server along with turn information

e The Game Rules determine which Game Objects can be interacted with and in what
ways and sends the data to the Object Models

e Object Models tell the Renderer where they are and whether they should be highlighted
based on the Game Rules
User Input includes buttons and mouse clicking and dragging
User Input sends button presses and mouse clicks to Validate Input

Page 10 of 26

side validation and to update other players

Validate Input forwards the button presses and mouse clicks to Update server for server-

Validate Input sends the moves to Game Rules which updates the game state while
waiting for server validation

Chat sends information to the server which broadcasts messages to other players

The Server sends game updates to Player Summary

3.2 Dependency Description

[]
WebGL Card
Gaming
package
4
|
Server
package package
v wl A4 v
] Three-obj- «interface»
Node.js Three.js mtlloader.js WebGL
Dev
v v 4 v 4 4
| | ; | | | |
Mocha.js Nodemon.js Express.js Socket.io sqlite3 bcrypt.js

The whole system breaks down into the Server package and Client package. In order for the
Client side to display the game in 3D, Three.js, Three-obj-mtl-loader.js, and a computer that can
at least emulate a graphics card. The Server package runs in the Node.js environment and the
code requires Express.js, Socket.io, sqlite3, and bcrypt.js in order to function with the client.
Mocha.js allows for unit testing and Nodemon.js allows for quick iterative development without
having to manually restart the server after every change.

Page 11 of 26

3.3 Interface Description

3.3.1 Module Interfaces

e External Interfaces
o Payment Processing (not yet implemented)
e Internal Interfaces
o Client - Server
m The Client sends:
e Player moves, bets, and chat (partially implemented)
m The Server broadcasts:
e Game state updates including player moves and bets
e Chat
o The server communicates with a database for user account information

3.3.2 User Interfaces (GUI)

Login Screen

Login

Enter username

Enter password

Users will be greeted with a login screen that asks for a username and password.

Page 12 of 26

Rules Screen — Not yet implemented

Rules

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

If a user is unfamiliar with a game’s rules, the user can access them at any time during game
play. If the rules are longer than a page, the user will be able to scroll through them. Clicking in
the grey area will return the user to the game play screen.

Page 13 of 26

Settings Screen

Settings

Setting
Setting
Setting
Setting

Setting

O
O
O
O

Setting

Should a user be interested in non-default game play, they can alter the game rules through the
settings screen by checking and unchecking boxes.

Page 14 of 26

Game Play Layout

Game Play Area

Player and other player
information display
(Banks, bets, current cards)

Chat

Settings, Rules,
Game play buttons

Page 15 of 26

Game Play Area

Depending on the specific game, the table layout could be drastically different. The current pot
may be shown on the table represented as chips and as text. The player’s current hand is
displayed at the bottom of the game play area. Other visible hands may also be displayed.
Cards may be in stacks, singles, or spreads. The player can click and drag cards around and
they will snap into place if near a certain location as long as the move is legal.

Chat Area

Jack: Hi!

Jilk: Yo!

John: Sup dogs?

Jane: Game on!

The chat interface will allow players to talk to each other while sharing a table. “All” will show
everything from all tabs. “Chat” messages are visible to all players. “Whisper” will allow players
to talk to a specific other player. “Console” will display messages related to trying to bet more
than the player has or making illegal moves, turn taking, and game state updates.

Page 16 of 26

Player Information Area

Bet $27 Bank: $250

Afa

Bet: $32 Bank: $150

= KQ§J

Folded Bank: $187

4l o
= « [JHE8

The player information area contains a summary of all the player’s states. It shows their current
bets, banks, and hands.

Settings, Rules, Game Play Button Area

The button area will change drastically depending on the specific game being played. It should
hold buttons relevant to the game being played as well as rules and settings buttons. Inactivated
buttons will be darkened. Buttons may have different colors for emphasis. Other than clicking to
select cards, this will be the primary way the player engages in game play.

Page 17 of 26

4. Detailed Design

4.1 Class Diagrams

4.1.1 Full Diagram

Controller

e The view is the display for the client and the controller sends commands and negotiates
with the server
The model exists on both the client side and server side
The client validates its own moves with the model and the server verifies them before
sending an updated state to each of the connected clients

Page 18 of 26

4.1.2 Server Diagram

server_single_session server_single_game

+model: game_rules + clients: list<client= Server

+ players: list<client= + games: list=game_Server=

has a

+game: game_rules

+ update(gameState): void

client
+add(player): void +add(player) : void
+ socket: socket
+ remove(player): void account seer account + remove(session): void
+account: server_accou
has a - has a
+ server: server_reference
\ has a
+ setServer(server): void
+ join(game): void
account_manager
+ mirror(rules): rules server_main_controller
: + db: db_connection
+ removeFromServer(): void [€——has a—__| + lobbies: map=string, lobby> -
+ invalidAction(): void + database: user database has 3= + getAccount(id):server_account
+ login(username, password): void + login(string, string): int
+ add(player, game): void
+ authenticate(data): void + make_payment(json): bool
+ getBet(): amount
+ yourTurn(): move
+ update(gamesState): void has a

has a

payment_proccessor
server_account db_connection
+ db: db_connection

+ conn: mysqli

+ makePayment(hash): double el > + proccessor: url has @

o item: attribute + executeSQL(string):string
+ proccessPayment(hash, id):void

chat_server

+ users: list<socket>

+ history: list<string>

telemetry_recorder

+ mesh: three.mesh

+ data: game_object

+ updated(): void
+ hide(): void

+ set_location(): void

e Server main controller has a server single game for each type of game playable
o When a client requests to join a game main controller passes the client to server
single game
o Server single controller has every currently running instance of that gametype
and inserts the client into one that's not full, server single session
e Server single session implements game rules in Model and is a component of server
single game
Client talks to server connection in Controller
Server account talks to account in Controller
Chat server talks to chat connection in Controller
Telemetry Recorder receives data from telemetry sender in Controller (not yet
implemented)
e Payment processor (not yet implemented)

Page 19 of 26

4.1.3 View Diagram

View

gl_object

+ mesh: three.mesh
+ data: game_object
+ interactable: bool
+visible: bool

+position: gl_position

collection

+ objects: list=gl_object=

+ spread: bezier

+ updated(): void
+ hide(): void

+ set_location(): void

—1tom—

|

hasa

gl_position

+ position: vec3

+ |ocation_id: int

+ sort(comparitor()): void
+ add(gl_object):void

+ remove(gl_object):void

bezier

+ points: vec3[4]

+ get_normal(): void

+ get_position(float): vec3

1to1

scene

+ scene: threejs.scene

+ addObject(gl_object): void

+ setConfiguration(json).void

renderer

+ render: three.mesh

+ frameTime: int

+ render(scene);

1to1

webgl_view

110 1—

+ scene:scene
+ renderer: renderer

+ mapper: object_mapper

+ hide(): void

1to1

object_mapper

+ locations: map<id, gl_position>

1tom
+ updated(): void +lookup(game_object,int):gl_object
+ hide(): void +setConfiguration(json):void
+ set_location(): void
1t01
texture_cache
object_factory
textures: map<string, texture=
. cache: texture_cache
materials: map=string, material> «——110 1

+loadTexture(name): texture

+loadMaterial(name).material

+setConfiguration(json):void

+make_gl_object(type, string):gl_Object

+ set_location(): void

¢

view <<interface>>

+game: game_rules

+ view: view

+ add(game_object, int)
+ remove(int)

+ set_location(): void

+ updated(): void

+ setLayout(json): void

e Collection is both a gl_object and a collection of them (theoretically it can contain
instances of collection too)

e Object_mapper keeps track of what gl_objects are in the scene and uses its lookup
function to find the gl_position to add new objects at. The positions are all defined when

setConfiguration is called.
Game rules in Model tells view what to display
View has a connect to server connection in Controller

Page 20 of 26

4.1.4 Controller Diagram

controller<<interface>>

+ game: game_rules

+ view: view

+ interact(game_object, game_object): bool

i

online_controller

+ account: account

+ updateSettings(string, string): void

+ initialize().void

+ set_location(): void

|

1101
L4

settings

+ settings: map=string, string=

+ data: game_object

+ updated(): void
+ hide(): void

+ set_location(): void

+ connection: server_connection | _1to1

Controller

server_connection

+ socket: socket

+ controller: online_controller

+ sendInput(game_object, game_object): void
+ hide(): void

+ set_location(): void

1to1

1tom

payment_card

+ name: string
+ last4: int

+ key: int

+ getTransaction(double, callback(int)): void

account

+ username: String

+id: int

+ balance: double;

+ cards: list=payment_card=

+ email: string

+ updateBalance(double): void

+ sendMail(String): void

chat_connection

+ chatWindow: element

+ socket: socket

+ sendMessage(): void

telemetry_sender

+ gamelD: int

+ socket: socket

+ send(json):void

Chat connection

Telemetry sender (not yet implemented)

Payment card (not yet implemented)

View in View has a connection to server connection
Client in Server talks to server connection
Server account in Server talks to account
Chat server in Server talks to chat connection

Page 21 of 26

e Telemetry Recorder in Server receives data from telemetry sender (not yet
implemented)

4.1.5 Model Diagram

Model
player
pot deck
+ username: string

+ bets: list<bet> + cards: stack<card>
+id:int
+ total: double N
+ hands: list<game_object> + shuffle(): void
+balance: double + addBet(bet): void + draw(): card
+ merge(deck): void
+ updated(): void
+addCard(card,int): void
+ hide(): void
+ set_location(): void
Tom texas_holdem bet
+ deck: deck ‘ game_object + better: player
110
game_rules<<interface>> + flop: spread | + guid: int + value: double
+ roundNumber: int .= # pot: pot +round: int
+ players: list<player> -
+isValid(game_object, gameObject) : bool
+ interact(game_object, game_object): bool
+ canlnteract(game_object): list<game_object> spread card
+ canMove(player): bool + cards: list=card> + suit:int
+ getState(bool): json + value: int
9 (. + addCard(card, int).void

KSE(S(EIEUSUH) void + removeCard(int): card

e The model is unique to the game type a player chooses, and can be swapped for any
other.
o This particular one has a theoretical version of texas hold 'em as an example
e Server single session in Server implements game rules and is a component of server
single game in Server
Game rules tells view in View what to display
Game rules receives instructions from server connection in Controller

4.2 Component Diagram

client

server

three.js our client N
our server
< code berypt
v
browser socket.io socket.io express sqlite

J

command communication

static hitp request

Page 22 of 26

4.3 Module Detailed Design

4.3.1 Data-flow Diagram Level 1

Client side
1
Model updates state
sends
3 Y
controller
adds cards
J
view sends inputs
O makes selection
user displays data

validates input
|

N

new state

14~

server

>

requests data

|

gets data

database

Overall flow inputs flow from the user through the view to the controller. The controller then
directs the input at the model or server. Then the controller updates the view which sends

information to the user.

Page 23 of 26

3.4.2 Data-flow Diagram Level 2

2.2
renderer

updates objects

Start here

encodes
scene

displays
user

requests
object

requests
render

adds bets

updates,

adds cards makes bets

player

gives card,

sends inputs

requests 34
payment
controller
retums payment
token

send command$

3.3

makes retums
requests cards

account

updates forwards
server updates (server copy)
sends command

updates,
adds cards

1.3
deck
S
3.2

connection

sends sends
user current
requests state

41 43
— game state
— gameserver
clien
game
moves

login and account
transactions state

4.2
server login
details
payment
request
44
login account_manager

4.3 payment request
result
payment
query ’
result query
results

records

Expanded interactions from level 1 Data Flow Diagram
Start at user module 2.1

Page 24 of 26

4.4 Database Schema

—| transaction ¥

id INT(11) "] payment ¥
9 payment_id INT(11) id INT(11)
& user_jd INT(11) ———————— | © fnam e VARCHAR(45)
» date DATETIME Inam e VARCHAR(45)
» ammount INT(11) zip VARCHAR(45)
- |—— ——I< S user_id INT(11)
v : key VARCHAR(255)
| I >
l |
' |
! |
! |
l |
4 |
! |
| user v |
id INT(11) |
|
> username VARCHAR(45) |
H———- _Jrecovery ¥
> hash VARCHAR(255) S
i 11
fnam e VARCHAR(45)
» hash VARCHAR(255)
Inam e VARCHAR(45) i startoate pATETIME
H-———— 'S ate
> email VARCHAR(45) oate DATETIME
s enabate
> credit INT(11
() > P user_id INT(11)
[

User table contains user data

Payment table contains payment info such as credit cards*
Transactions are specific payments from a credit card for a user*®
Recovery is for account recovery*®

* not implemented

4.5 Requirements Traceability Matrix (RTM)

Require | Requirement Module Design Data Design
ment # Component Component (not fully
implemented yet)

3.2.1 Make connection to server 3.2 Server

Page 25 of 26

3.2.2 Login 4.4 Client

3.2.3 Start game 4.3 GameServer

3.24 Send moves/bets 3.1 Playerhand,
playerbet

3.2.5 Send chat 3.2 n/a

3.2.6 Send gamestate 4.1 GameServer

3.2.7 Update chat messages 4.1 n/a

3.2.8 Join game 4.2 GameServer

3.2.9 Handle dropped players 4.2 Playerhand

3.2.10 Modify game settings 3.1 Client

3.2.11 Determine bet 2.1 Client

3.2.12 Display rules 2.2 n/a

3.213 Display game 2.2 Renderer

3.2.14 Display win/loss and payout 2.2 View

3.2.15 Read mouse input 21 View

3.2.16 Query database 4.5 Server

3.2.17 Validate bets/moves 4.3/11 GameServer

3.2.18 Shuffle deck 1.3 Deck

3.2.19 Display opponent visible cards 2.2 GameServer

3.2.20 Play against Al 4.3 GameServer

3.2.21 Load buttons dynamically 2.1 View

3.2.22 Select game 3.1 Server, Client

Page 26 of 26

