
Page 1 of 26

Design Document
WebGL Card Game Platform

Version 1.6

3/15/19

Team WebGL Game

https://docs.google.com/document/d/1JLMnEJU9RaDpTXMWtOYVJ_
XVxs6VLg2dP8r2Bk2ku-8/edit

Computer Science / Bellevue College

Sara Farag

Page 2 of 26

Revisions

Version Primary Author Description of Version Date completed

1.0 Sean Hardin, Anthony
Klobas, Jeffrey Talada

Created primary version of document 11/7/18

1.1 Jeffrey Talada, Sean
Hardin

Finalized for Milestone 1 12/4/18

1.2 Jeffrey Talada, Anthony
Klobas

Updated class and dependency
diagrams

1/24/19

1.3 Anthony Klobas Updated class diagrams, dependency
diagram

2/8/2019

1.4 Jeffrey Talada Updated class diagrams 2/20/19

1.5 Jeffrey Talada Updated traceability matrix 3/8/19

1.6 Anthony Klobas, Sean
Hardin, Jeffrey Talada

Updated database and dependency
descriptions, DFD level 2 diagram;
Added DFD level 1, Component, and
Database schema diagrams

3/15/19

Page 3 of 26

Table of Contents

Revisions 2

Table of Contents 3

1. Introduction 4
1.1 Purpose 5
1.2 Scope 5
1.3 Definitions, Acronyms and Abbreviations 5
1.4 References 6

2. System Overview 7

3. System Components 8
3.1 Decomposition Description 9

3.1.1 Server 9
3.1.2 Client 9

3.2 Dependency Description 11
3.3 Interface Description 12

3.3.1 Module Interfaces 12
3.3.2 User Interfaces (GUI) 12

Login Screen 12
Rules Screen 13
Settings Screen 14
Game Play Layout 15
Game Play Area 16
Chat Area 16
Player Information Area 17
Settings, Rules, Game Play Button Area 17

4. Detailed Design 18
4.1 Class Diagrams 18

4.1.1 Full Diagram 18
4.1.2 Server Diagram 19
4.1.3 View Diagram 20
4.1.4 Controller Diagram 21
4.1.5 Model Diagram 22

4.2 Component Diagram 22
4.3 Module Detailed Design 23

Page 4 of 26

4.3.1 Data-flow Diagram Level 1 23
3.4.2 Data-flow Diagram Level 2 24

4.4 Database Schema 25
4.5 Requirements Traceability Matrix (RTM) 25

Page 5 of 26

1. Introduction

1.1 Purpose
The purpose of this document is to describe how to architect an online card game, including
how to separate the particular ruleset from the GUI and the server. It is intended to help the
implementers and Sara Farag.

1.2 Scope
The current scope of our software is to build an online card gaming platform that utilizes WebGL
graphics. It will support a modular design allowing for easily updating individual functionalities,
and swapping out certain visuals or functions as a user desires. The modules we are currently
working on include basic visuals, loading assets from file, loading the game rules from file, and
functions to pass only the needed information in order for game logic to be completely separate
from display logic.
The benefits of our platform lie in the modularity. When we add new functionalities in the future,
we will only need to modify one of the existing modules, rather than keep track of all the
different parts of a full game that need to be changed.

1.3 Definitions, Acronyms and Abbreviations
● AI - artificial intelligence
● Client - The application running inside of a user’s web browser that communicates with

our server to run the game
● DOM - Document object model
● FPS - Frames per second
● Fragment - Small section of a polygon to be rendered (think pixel)
● GLSL - OpenGL Shading Language
● GPU - Graphics processing unit
● IDE - Integrated Development Environment
● JS - Java Script
● MVC - Model View Controller, a common way of decoupling the code that handles

interaction, logic, and display
● Player - A person using the client to access the system
● RDBMS - Relational Database Management System
● UI - User Interface
● User - A person using the client to access the system
● Vertex - a point at a "corner" of a polygon

Page 6 of 26

● Server - The application running the website and validation code for game play
● Shader - a program written to transform and display an object
● Z depth - the distance an object is from the observer, used for occlusion

1.4 References
● Client-Server: wikipedia.org, ‘Client-server model’, 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Client%E2%80%93server_model. [Accessed: 3- Dec- 2018].
● Microservice: microsoft.com, ‘Microservices architecture style’, 2018. [Online]. Available:

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-
styles/microservices. [Accessed: 3- Dec- 2018].

● MVC: mozilla.org, ‘MVC architecture’, 2018. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture.
[Accessed: 3- Dec- 2018].

● N-Tier: microsoft.com, ‘N-tier architecture style’, 2018. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/n-tier.
[Accessed: 3- Dec- 2018].

● Node.js: nodejs.org, ‘About Node.js’. [Online]. Available: https://nodejs.org/en/about/.
[Accessed: 3- Dec- 2018].

● Three.js: threejs.org, ‘Featured Projects’. [Online]. Available: https://threejs.org/.
[Accessed: 3- Dec- 2018].

Page 7 of 26

2. System Overview

Page 8 of 26

3. System Components
● Overall architecture is client-server
● Client is MVC
● Server is a collection of Microservices

○ i.e. game, chat, and payment are independent services

Page 9 of 26

3.1 Decomposition Description

3.1.1 Server

● A client will connect to the server through the Client Connection
○ The Server then spawns a Game Server and connects it to the client through the

Client Connection
● A client may maintain a User Account while connected to the Server

○ User Account information is stored in a Database
○ The Game Server spawns a copy of the desired Game Rules
○ Game Server broadcasts game updates to each player’s client through Client

Connection
● Game Rules validates a client’s actions

Page 10 of 26

3.1.2 Client

● When the client is connected to a Game Server the Games Rules are updated by the
Server along with turn information

● The Game Rules determine which Game Objects can be interacted with and in what
ways and sends the data to the Object Models

● Object Models tell the Renderer where they are and whether they should be highlighted
based on the Game Rules

● User Input includes buttons and mouse clicking and dragging
● User Input sends button presses and mouse clicks to Validate Input

Page 11 of 26

● Validate Input forwards the button presses and mouse clicks to Update server for server-
side validation and to update other players

● Validate Input sends the moves to Game Rules which updates the game state while
waiting for server validation

● Chat sends information to the server which broadcasts messages to other players
● The Server sends game updates to Player Summary

3.2 Dependency Description

The whole system breaks down into the Server package and Client package. In order for the
Client side to display the game in 3D, Three.js, Three-obj-mtl-loader.js, and a computer that can
at least emulate a graphics card. The Server package runs in the Node.js environment and the
code requires Express.js, Socket.io, sqlite3, and bcrypt.js in order to function with the client.
Mocha.js allows for unit testing and Nodemon.js allows for quick iterative development without
having to manually restart the server after every change.

Page 12 of 26

3.3 Interface Description

3.3.1 Module Interfaces
● External Interfaces

○ Payment Processing (not yet implemented)
● Internal Interfaces

○ Client - Server
■ The Client sends:

● Player moves, bets, and chat (partially implemented)
■ The Server broadcasts:

● Game state updates including player moves and bets
● Chat

○ The server communicates with a database for user account information

3.3.2 User Interfaces (GUI)

Login Screen

Users will be greeted with a login screen that asks for a username and password.

Page 13 of 26

Rules Screen – Not yet implemented

If a user is unfamiliar with a game’s rules, the user can access them at any time during game
play. If the rules are longer than a page, the user will be able to scroll through them. Clicking in
the grey area will return the user to the game play screen.

Page 14 of 26

Settings Screen

Should a user be interested in non-default game play, they can alter the game rules through the
settings screen by checking and unchecking boxes.

Page 15 of 26

Game Play Layout

Page 16 of 26

Game Play Area

Depending on the specific game, the table layout could be drastically different. The current pot
may be shown on the table represented as chips and as text. The player’s current hand is
displayed at the bottom of the game play area. Other visible hands may also be displayed.
Cards may be in stacks, singles, or spreads. The player can click and drag cards around and
they will snap into place if near a certain location as long as the move is legal.

Chat Area

The chat interface will allow players to talk to each other while sharing a table. “All” will show
everything from all tabs. “Chat” messages are visible to all players. “Whisper” will allow players
to talk to a specific other player. “Console” will display messages related to trying to bet more
than the player has or making illegal moves, turn taking, and game state updates.

Page 17 of 26

Player Information Area

The player information area contains a summary of all the player’s states. It shows their current
bets, banks, and hands.

Settings, Rules, Game Play Button Area

The button area will change drastically depending on the specific game being played. It should
hold buttons relevant to the game being played as well as rules and settings buttons. Inactivated
buttons will be darkened. Buttons may have different colors for emphasis. Other than clicking to
select cards, this will be the primary way the player engages in game play.

Page 18 of 26

4. Detailed Design

4.1 Class Diagrams

4.1.1 Full Diagram

● The view is the display for the client and the controller sends commands and negotiates
with the server

● The model exists on both the client side and server side
● The client validates its own moves with the model and the server verifies them before

sending an updated state to each of the connected clients

Page 19 of 26

4.1.2 Server Diagram

● Server main controller has a server single game for each type of game playable
○ When a client requests to join a game main controller passes the client to server

single game
○ Server single controller has every currently running instance of that gametype

and inserts the client into one that's not full, server single session
● Server single session implements game rules in Model and is a component of server

single game
● Client talks to server connection in Controller
● Server account talks to account in Controller
● Chat server talks to chat connection in Controller
● Telemetry Recorder receives data from telemetry sender in Controller (not yet

implemented)
● Payment processor (not yet implemented)

Page 20 of 26

4.1.3 View Diagram

● Collection is both a gl_object and a collection of them (theoretically it can contain
instances of collection too)

● Object_mapper keeps track of what gl_objects are in the scene and uses its lookup
function to find the gl_position to add new objects at. The positions are all defined when
setConfiguration is called.

● Game rules in Model tells view what to display
● View has a connect to server connection in Controller

Page 21 of 26

4.1.4 Controller Diagram

● Chat connection
● Telemetry sender (not yet implemented)
● Payment card (not yet implemented)
● View in View has a connection to server connection
● Client in Server talks to server connection
● Server account in Server talks to account
● Chat server in Server talks to chat connection

Page 22 of 26

● Telemetry Recorder in Server receives data from telemetry sender (not yet
implemented)

4.1.5 Model Diagram

● The model is unique to the game type a player chooses, and can be swapped for any
other.

○ This particular one has a theoretical version of texas hold 'em as an example
● Server single session in Server implements game rules and is a component of server

single game in Server
● Game rules tells view in View what to display
● Game rules receives instructions from server connection in Controller

4.2 Component Diagram

Page 23 of 26

4.3 Module Detailed Design

4.3.1 Data-flow Diagram Level 1

Overall flow inputs flow from the user through the view to the controller. The controller then
directs the input at the model or server. Then the controller updates the view which sends
information to the user.

Page 24 of 26

3.4.2 Data-flow Diagram Level 2

Expanded interactions from level 1 Data Flow Diagram
Start at user module 2.1

Page 25 of 26

4.4 Database Schema

● User table contains user data
● Payment table contains payment info such as credit cards*
● Transactions are specific payments from a credit card for a user*
● Recovery is for account recovery*

* not implemented

4.5 Requirements Traceability Matrix (RTM)

Require
ment #

Requirement Module Design
Component

Data Design
Component (not fully
implemented yet)

3.2.1 Make connection to server 3.2 Server

Page 26 of 26

3.2.2 Login 4.4 Client

3.2.3 Start game 4.3 GameServer

3.2.4 Send moves/bets 3.1 Playerhand,
playerbet

3.2.5 Send chat 3.2 n/a

3.2.6 Send gamestate 4.1 GameServer

3.2.7 Update chat messages 4.1 n/a

3.2.8 Join game 4.2 GameServer

3.2.9 Handle dropped players 4.2 Playerhand

3.2.10 Modify game settings 3.1 Client

3.2.11 Determine bet 2.1 Client

3.2.12 Display rules 2.2 n/a

3.2.13 Display game 2.2 Renderer

3.2.14 Display win/loss and payout 2.2 View

3.2.15 Read mouse input 2.1 View

3.2.16 Query database 4.5 Server

3.2.17 Validate bets/moves 4.3/1.1 GameServer

3.2.18 Shuffle deck 1.3 Deck

3.2.19 Display opponent visible cards 2.2 GameServer

3.2.20 Play against AI 4.3 GameServer

3.2.21 Load buttons dynamically 2.1 View

3.2.22 Select game 3.1 Server, Client

