
Page 1 of 28

Software Requirements Specification
WebGL Card Game Platform

Version 1.3

3/15/19

Team WebGL Game

https://docs.google.com/document/d/1of-
L2X5ThC4Foo_qNy0bsRURRdHwSEwFtL7rQPF1dT8/edit

Bellevue College

Sara Farag

Page 2 of 28

Revisions

Version Primary Author Description of Version Date completed

1.0 Sean Hardin, Anthony
Klobas, Jeffrey Talada

Created primary version of document 10/17/18

1.1 Jeffrey Talada, Sean
Hardin

Finalized for Milestone 1 12/4/18

1.2 Anthony Klobas Updated Requirements 1/24/19

1.3 Anthony Klobas, Sean
Hardin, Jeffrey Talada

Updated client functions, database
currently implemented, and removed
User Characteristics

3/15/19

Page 3 of 28

Table of Contents

Revisions 2

Table of Contents 3

1. Introduction 5
1.1 Purpose 5
1.2 Scope 5
1.3 Definitions, Acronyms & Abbreviations 5
1.4 References 6
1.5 Overview 6

2. Overall Description 7
2.1 Product Perspective 7

2.1.1 User interfaces 8
Login Screen 8
Rules Screen (Not yet implemented) 9
Settings Screen 10
Game Play Layout 11
Game Play Area 12
Chat Area 12
Player Information Area 13
Settings, Rules, Game Play Button Area 13

2.1.2 Software interfaces 13
2.1.3 Communication Interfaces 14

2.2 Product Functions 14
2.2.1 Client Functions 14
2.2.2 Server Functions 14

2.3 Constraints 15
2.4 Assumptions and Dependencies 15

3. Specific Requirements 16
3.1 External Interfaces 16

3.1.1 Server interfaces 16
3.1.2 Client interfaces 16

3.2 Functional Requirements 16
3.3 Performance Requirements 27
3.4 Logical Database Requirements 27

Page 4 of 28

3.5 Design Constraints 27
3.6 Software System Attributes 28

Page 5 of 28

1. Introduction

1.1 Purpose
This document specifies and lays out the assumptions, constraints, and requirements of

a WebGL based card game platform.
This document is intended to be used as a reference by Dr. Sara Farag, the project

developers, and potentially future developers.

1.2 Scope
The scope of this system is to build an online card gaming platform that utilizes WebGL

graphics. It will support hosting of secure games with multiple players including AI players. The
system shall support running multiple games at a time on the server side. The system will
include at least two games (Blackjack and Texas Hold’em) and include a betting system. A
player may login to maintain a win/loss and balance history. The platform shall only support
turn-based card games. The system won’t support saving games. If there is time, other
functionalities like chat, more AI options, and more playable games will be included.

The benefits of building a platform as opposed to a single game include extensibility in
security, support for the basic suite of functionalities (multiplayer, AI, chat, betting), and easy
development of new card games.

1.3 Definitions, Acronyms & Abbreviations
● AGILE - an approach to software development that emphasizes “adaptive planning,

evolutionary development, early delivery, and continual improvement, and it encourages
rapid and flexible response to change.”
<https://en.wikipedia.org/wiki/Agile_software_development>

● AI - artificial intelligence
● Client - The application running inside of a user’s web browser that communicates with

our server to run the game
● DOM - Document object model
● ES6 - A more recent version of javascript with a module system
● FPS - Frames per second
● Fragment - Small section of a polygon to be rendered (think pixel)
● GLSL - OpenGL Shading Language
● GPU - Graphics processing unit
● IDE - Integrated Development Environment
● JS - Javascript
● JSON - Javascript Object Notation
● Player - A person using the client to access the system
● RDBMS - Relational Database Management System
● UI - User Interface

Page 6 of 28

● User - A person using the client to access the system
● Vertex - a point at a "corner" of a polygon
● Server - The application running the website and validation code for game play
● Shader - a program written to transform and display an object
● Z depth - the distance an object is from the observer, used for occlusion

1.4 References
 Response Time Limits - nngroup.com, ‘Response Times: The 3 Important Limits’, 1993.
[Article]. Available: https://www.nngroup.com/articles/response-times-3-important-limits/.
[Accessed: 4- Dec- 2018].

1.5 Overview
Section 2 of this document provides an overview of the system shown through the use of

various diagrams along with simple descriptions of expectations for it. We begin with interfaces
that the system will interact with, followed by a summarized list of the functionality that will be
implemented, and potential users who will use the system. Lastly, it lists off constraints and
assumptions that limit the system. Section 3 contains all the requirements of the game platform
fleshed out in detail, beginning with the requirements needed to make the system run at all, then
explaining the requirements which will improve user experience.

Page 7 of 28

2. Overall Description

2.1 Product Perspective
The system is based on the client-server model. Upon visiting the website, users will

load a copy of the client which connects them to the game server. The user interacts with the
system through the client UI which will exchange move, bet, and chat data with the server over
the internet to manipulate the game’s state. The system is dependent upon the user’s device
supporting WebGL.

Context Diagram

Page 8 of 28

2.1.1 User interfaces

Login Screen

Users will be greeted with a login screen that asks for a username and password.

Page 9 of 28

Rules Screen (Not yet implemented)

If a user is unfamiliar with a game’s rules, the user can access them at any time during game
play. If the rules are longer than a page, the user will be able to scroll through them. Clicking in
the grey area will return the user to the game play screen.

Page 10 of 28

Settings Screen

Should a user be interested in non-default game play, they can alter the game rules through the
settings screen by checking and unchecking boxes.

Page 11 of 28

Game Play Layout

Page 12 of 28

Game Play Area

Depending on the specific game, the table layout could be drastically different. The current pot
may be shown on the table represented as chips and as text. The player’s current hand is
displayed at the bottom of the game play area. Other visible hands may also be displayed.
Cards may be in stacks, singles, or spreads. The player can click and drag cards around and
they will snap into place if near a certain location as long as the move is legal.

Chat Area

The chat interface will allow players to talk to each other while sharing a table. “All” will show
everything from all tabs. “Chat” messages are visible to all players. “Whisper” will allow players
to talk to a specific other player. “Console” will display messages related to trying to bet more
than the player has or making illegal moves, turn taking, and game state updates.

Page 13 of 28

Player Information Area

The player information area contains a summary of all the player’s states. It shows their current
bets, banks, and hands. The number of players will depend on which game is being played and
how many people joined. The maximum and minimum number of players for a game will be
specified in individual game rules.

Settings, Rules, Game Play Button Area

The button area will change drastically depending on the specific game being played. It should
hold buttons relevant to the game being played as well as rules and settings buttons. Inactivated
buttons will be darkened. Buttons may have different colors for emphasis. Other than clicking to
select cards, this will be the primary way the player engages in game play.

2.1.2 Software interfaces
● WebGL
● Database (Optional)

Page 14 of 28

2.1.3 Communication Interfaces
● TCP-IP
● SSL (Optional)

2.2 Product Functions

2.2.1 Client Functions
● Client connects to server
● Client page loads buttons for every available game option
● Client can select a type of game to join

○ Appropriate settings screen appears when choice is made
● Client can modify the game settings to be used in their game
● Client can request to join an existing game session
● Dynamically load in buttons based on the game chosen
● Dynamically load in game model based on choice
● User moves sent to server
● Placed bets sent to server
● Chat sent to server
● Notifies user when making an invalid move
● Display game on webGL canvas
● Display other player information in top right block of page as gamestate is received
● Display chat in the chatbox on the bottom left of the page

2.2.2 Server Functions
● Listen for user connections

○ On connection listen for user requests
● Create lobby for each type of game being hosted
● Create new game sessions for player
● Support multiplayer games
● Add players to existing game sessions
● Remove players from games when they lose connection and reorganize data to let

games continue
● Forwards chat to all players in their own sessions
● Check that player moves are allowed based on the current gamestate

○ Block and notify the player if not allowed
○ Apply the move to the game model if it is allowed

● Send updated gamestate to players in a session
○ Hide the parts of the gamestate that individual players should not see

● Remove sessions that have no players in them
● Apply specific game logic as is written in in the individual game files.

Data Flow Diagram

Page 15 of 28

2.3 Constraints
● Syncing clients and server across the internet
● Screen size/resolution
● Fat fingers
● Users attempting to cheat
● Database to server communication (optional)
● Internet connection speed
● Future game development

2.4 Assumptions and Dependencies
● Users have an up to date version of their preferred browser that supports WebGL and

ES6 Modules
○ Edge 16+
○ Firefox 60+
○ Chrome 61+
○ Safari 11+

● Users have a device capable of running WebGL
○ The user’s GPU must support OpenGL ES 2
○ Failing that, the user’s processor must be fast enough to handle gpu calls in

emulation
● Users have at least a 56kbps internet connection
● Users CANNOT have javascript blocked in their browser
● Server must be able to run node.js applications
● Server must have MySQL installed

Page 16 of 28

3. Specific Requirements

3.1 External Interfaces

3.1.1 Server interfaces
● Connection to RDBMS

3.1.2 Client interfaces
● Persistent connection to server
● Send requests to GPU
● Query the browsers DOM
● Request resources from various sources online
● Get cursor position and clicks

3.2 Functional Requirements

3.2.1

Use Case Name: Make connection to server

Actor: Client, Server

Priority: Essential

Trigger: User opens webpage

Precondition: User is connected to the internet and on the game page

Basic Path: 1. User’s client forms TCP connection with server
2. User opens game page

Alternate Path: 1. Failed to form TCP connection
1.1. Inform user that client was unable to form a connection
1.2. Try again after a few seconds
1.3. Inform user that client was still unable to connect, and

that the problem lies either in their internet or the server
being down.

Postcondition: User client is connected and able to quickly send data to server

Exception Path:

Page 17 of 28

3.2.2

Use Case Name: Login

Actor: Client, Server

Priority: Optional

Trigger: User clicks login button on top right of main page

Precondition: (3.2.1) Make connection to server

Basic Path: 1. User enters their account information
2. User clicks login

Alternate Path: 1. Failed to login
1.1. Inform user that the username and password

combination was not found
1.2. Allow the user to try logging in again

Postcondition: User’s account information should show on the player information
section on the webpage

Exception Path:

3.2.3

Use Case Name: Start game

Actor: Client

Priority: Essential

Trigger: User clicks play button in button area

Precondition: (3.2.1) Make connection to server, (3.2.15) Read mouse input

Basic Path: 1. User clicks on play button

Alternate Path:

Postcondition: Game starts

Exception Path:

Page 18 of 28

3.2.4

Use Case Name: Send moves/bets

Actor: Client, Server

Priority: Essential

Trigger: User selects any of the moves from the button area

Precondition: (3.2.3) Start game

Basic Path: 1. User clicks any of the move options in button area

Alternate Path:

Postcondition: Client sends that move and bet combination over to the server through
existing connection

Exception Path:

3.2.5

Use Case Name: Send chat

Actor: Client, Server

Priority: Essential

Trigger: User clicks the send message button inside the chat

Precondition: (3.2.1) Make connection

Basic Path: 1. User types text into chat field
2. User hits enter/clicks send

Alternate Path:

Postcondition: Client sends text over to server

Exception Path:

Page 19 of 28

3.2.6

Use Case Name: Send gamestate

Actor: Client, Server

Priority: Essential

Trigger: Server receives moves from user

Precondition: (3.2.4) Send moves/bets

Basic Path: 1. Receives move from user
2. Verifies that move is valid
3. Sends updated gamestate to all players of that game

Alternate Path:

Postcondition: All connected players have screens updated

Exception Path:

3.2.7

Use Case Name: Update chat messages

Actor: Client, Server

Priority: Essential

Trigger: Server receives chat text from client

Precondition: (3.2.5) Send chat

Basic Path: 1. Receive chat from client
2. Send messages to all clients connected to game

Alternate Path:

Postcondition: All connected players see chat from all other connected players

Exception Path:

Page 20 of 28

3.2.8

Use Case Name: Join game

Actor: Client, Server

Priority: Essential

Trigger: Multiple players choose to play a game

Precondition: (3.2.3) Start game

Basic Path: 1. Multiple users click play
2. All of them get assigned to a game number
3. In game actions are matched up with other players in same

game number

Alternate Path: 1. Failed to find other players
1.1. Prompt User that no players found
1.2. Prompt User if solo game is acceptable.

Postcondition: All players in a game receive the same game information from the
server as each other

Exception Path:

3.2.9

Use Case Name: Handle dropped players

Actor: Client, Server

Priority: Low

Trigger: A player loses their connection to the game server

Precondition: (3.2.8) Join game

Basic Path: 1. A player’s connection to the server is lost
2. Player’s bet is lost, turns get skipped, cards are all sent to

discard pile
3. Game continues for remaining players normally

Alternate Path:

Postcondition: Game runs for remaining players, dropped player loses what they bet

Exception Path:

Page 21 of 28

3.2.10

Use Case Name: Modify game settings

Actor: Client

Priority: Essential

Trigger: User clicks settings in the button area

Precondition: (3.2.1) make connection, (3.2.15) Read mouse input

Basic Path: 1. User clicks settings and enters settings menu
2. User changes available settings
3. User clicks save changes

Alternate Path:

Postcondition: New settings take effect for that user

Exception Path:

3.2.11

Use Case Name: Determine bet

Actor: Client

Priority: Essential

Trigger: Click the bet more or bet less buttons

Precondition: (3.2.1) make connection, (3.2.15) Read mouse input

Basic Path: 1. User clicks one of the change bet buttons
2. Client changes the bet value accordingly

Alternate Path:

Postcondition: Bet value is changed to what user wants, 0 is a valid bet

Exception Path:

Page 22 of 28

3.2.12

Use Case Name: Display rules (not yet implemented)

Actor: Client

Priority: Essential

Trigger: User clicks on rules button in button area

Precondition: (3.2.1) make connection, (3.2.15) Read mouse input

Basic Path: 1. User clicks rules button
2. An overlay pops up displaying the rules

Alternate Path:

Postcondition: The rules are displayed

Exception Path:

3.2.13

Use Case Name: Display game

Actor: Client

Priority: Essential

Trigger: Connection is made

Precondition: (3.2.1) make connection

Basic Path: 1. Get starting game page from server
2. Load up page into webGL canvas

Alternate Path:

Postcondition: Screen now shows

Exception Path:

Page 23 of 28

3.2.14

Use Case Name: Display win/loss and payout (not yet implemented)

Actor: Client

Priority: Essential

Trigger: Receive ending gamestate

Precondition: (3.2.6) send gamestate

Basic Path: 1. Receive ending gamestate
2. Displays victory message to user
3. Displays amount gained to user

Alternate Path: 1. Receive ending gamestate
2. Displays losing message to user
3. Displays amount lost to user

Postcondition: User sees whether they won or lost and how much they won/lost

Exception Path:

3.2.15

Use Case Name: Read mouse input

Actor: Client

Priority: Essential

Trigger: User clicks on any button in the button area

Precondition: (3.2.1) make connection

Basic Path: 1. User clicks on a button
2. That button’s command runs

Alternate Path:

Postcondition: Client runs code specific to button clicked

Exception Path:

Page 24 of 28

3.2.16

Use Case Name: User Login

Actor: Server

Priority: Optional

Trigger: User logs in

Precondition: (3.2.1) make connection

Basic Path: 1. User sends login information
2. Queries database for username and password to compare
3. Compares given username and password with stored

Alternate Path:

Postcondition: User is logged in

Exception Path: User is told username and password are incorrect

3.2.17

Use Case Name: Validate bets/moves

Actor: Server, Client

Priority: Essential

Trigger: Client sends bets/moves

Precondition: (3.2.4) Send bets/moves, (3.2.16) query database

Basic Path: 1. Receive bets/moves
2. Query database for their cash and potential moves
3. Determine to be valid
4. Update gamestate

Alternate Path: 1. Determine to be invalid
2. Request player to redo move

Postcondition: Moves are determined valid and applied.

Exception Path:

Page 25 of 28

3.2.18

Use Case Name: Shuffle deck

Actor: Server

Priority: Essential

Trigger: Game started

Precondition: (3.2.3) Start game

Basic Path: 1. Game is started
2. Determines random seed
3. Shuffles deck with created seed

Alternate Path:

Postcondition: Deck is randomly shuffled for every game

Exception Path:

3.2.19

Use Case Name: Display opponent visible cards

Actor: Client, Server

Priority: Essential

Trigger: Playing a multiplayer game

Precondition: (3.2.8) connect multiple players

Basic Path: 1. Server delivers game state
2. Client displays opponent cards in player bar

Alternate Path:

Postcondition: User sees all shown cards of opponents

Exception Path:

Page 26 of 28

3.2.20

Use Case Name: Play against AI

Actor: Server

Priority: Low

Trigger: User plays a game alone

Precondition: (3.2.3) Start game

Basic Path: 1. User starts game
2. Server runs a decision tree based AI to make their moves

against the player

Alternate Path:

Postcondition: Player is playing against ai.

Exception Path:

3.2.21

Use Case Name: Load buttons dynamically

Actor: Client

Priority: Essential

Trigger: User selects and joins a game

Precondition: (3.2.8) Join game

Basic Path: 1. User joins game
2. Client loads buttons as described in json sent by server

Alternate Path:

Postcondition: Player can now click buttons to make their moves

Exception Path:

Page 27 of 28

3.2.22

Use Case Name: Select game

Actor: Client

Priority: Essential

Trigger: User selects a running game

Precondition: (3.2.1) Connect to server

Basic Path: 1. User connects to server asking for game
2. Server responds with open games
3. User selects one to join and notifies server

Alternate Path:

Postcondition: Player joined their selected game

Exception Path:

3.3 Performance Requirements
● Client should be able to render the scene at at least 30 FPS
● Matchmaking should take less than 3 minutes to complete
● Game loading on subsequent visits should load within 1 minute (praise the cache)
● The time between a player making a move and other players updating the game state

should be under 5 seconds
● Visual response to user input should be within 100 milliseconds

3.4 Logical Database Requirements
● Client

○ Contains client username, hash, and total credits

3.5 Design Constraints

● Screen ratio and resolution - ideally our game should fit entirely within the user’s screen
● Device whether phone (optional) or other (tablet, laptop, or desktop)
● Client-server architecture
● Web-based
● Security of transactions and game play

Page 28 of 28

3.6 Software System Attributes
● Reliability

○ The platform and example games shouldn’t crash the system.
○ Future developer made games shouldn’t crash the system.

● Accessibility
○ The system should have support for colorblind people.
○ The system should have support for blind people (later).
○ Deaf people can play without issue.

● Availability
○ The application should be available for the user at all times.
○ Multiplayer game availability will depend on number of users on at any given time

and how many are accepting new players.
● Security

○ Users shouldn’t be able to easily cheat.
○ Protects user information.

● Maintainability
○ The platform should be easy to extend.
○ The platform should be modular.

● Portability
○ The user can access the game from any computer with an internet connection.

