Test #1

Y is the knight.

Z is the knave.

Y is the knave.

Z is the knight.

start 1 kilometer a	ce as long to run 2,2 part and begin runn n they meet? Assum B. 412 m	ing toward each oth	er. How far, to the r	Ũ		
2. Replace each letter in ONE + ONE = TWO with a base-10 digit so that identical letters are replaced by identical digits and different letters are replaced with different digits, T is the only odd digit, and O cannot be zero. What is the value of N ?						
A. 0	B. 2	C. 4	D. 6	E. 8		
3. Which of the fol A. 2^{1000}	lowing numbers has B. 6 ⁵⁰⁰	the greatest value? C. 30 ²⁰⁰	D. 50 ¹⁰⁰	E. 1000 ⁷⁵		
4. The equation $a^2 + b^2 + c^5 = 2019$ has exactly one solution where <i>a</i> , <i>b</i> , and <i>c</i> are positive integers with $a > b$. Find $a + b + c$ for this solution.						
A. 56	B. 57	C. 58	D. 59	E. 60		
5. Let M be the smallest positive integer that has a remainder of 2 when divided by 3 and has a remainder of 4 when divided by 5. Let N be the smallest positive integer that has a remainder of 6 when divided by 7 and has a remainder of 8 when divided by 9. Find M+N.						
A. 70	B. 72	C. 74	D. 76	E. 78		
6. There are 200 closed lockers numbered 1-200 in a locker room. Student 1 goes in and opens each locker, then student 2 goes in and closes every other locker (2, 4, 6, 8). Student 3 then changes the state (opens it if it is closed, closes it if it is open) of every third locker (3, 6, 9, 12), then student 4 does the same for every fourth locker (4, 8, 12, 16). This continues until 200 students have gone through, with the n th student changing the state of all lockers numbered with a multiple of n . How many lockers are open at the end?						
-	0	pen at the end?				
multiple of <i>n</i> . How A. 14	0	pen at the end? C. 48	D. 64	E. 100		
A. 147. In some context for all real number many of the follow	w many lockers are o B. 24 This, a function is defined try $a, f(ax) = af(x)$ are ting functions from \mathbb{R}	C. 48 ded to be <i>linear</i> if for f(x + y) = f(x) + f(x) to \mathbb{R} are linear?	all elements x and y (y). Using <u>this</u> define	y in the domain and		
A. 147. In some context for all real number many of the follow	w many lockers are o B. 24 cs, a function is defin rs $a, f(ax) = af(x)$ are	C. 48 ded to be <i>linear</i> if for f(x + y) = f(x) + f(x) to \mathbb{R} are linear?	all elements x and y (y). Using <u>this</u> define	y in the domain and		
A. 14 7. In some context for all real number many of the follow f_1 A. 0 8. Find the sum of	w many lockers are of B. 24 Es, a function is defin rs a , $f(ax) = af(x)$ are ing functions from \mathbb{R} $f(x) = 3x$ $f_2(x) = 32$ B. 1 f all base-10 eight-dig	C. 48 ded to be <i>linear</i> if for ad $f(x + y) = f(x) + f$	all elements x and y (y). Using <u>this</u> define $f_4(x) = 0$ D. 3 anot be zero) number	y in the domain and hition of linear, how E. 4		
A. 14 7. In some context for all real number many of the follow f_1 A. 0 8. Find the sum of	w many lockers are of B. 24 Es, a function is defin rs a , $f(ax) = af(x)$ are ing functions from \mathbb{R} $f(x) = 3x$ $f_2(x) = 32$ B. 1 f all base-10 eight-dig or 1 (for example: 1	C. 48 ded to be <i>linear</i> if for ad $f(x + y) = f(x) + f$	all elements x and y (y). Using <u>this</u> define $f_4(x) = 0$ D. 3 (not be zero) number , 1111111).	y in the domain and hition of linear, how E. 4 rs that contain no		
A. 14 7. In some context for all real number many of the follow $f_1($ A. 0 8. Find the sum of digits other than 0 A. 711,111,104	w many lockers are of B. 24 Es, a function is defin rs a , $f(ax) = af(x)$ are ing functions from \mathbb{R} $f(x) = 3x$ $f_2(x) = 3x$ B. 1 f all base-10 eight-dig 0 or 1 (for example: 1 B. 1,010,101,010 and <i>b</i> are the two re	C. 48 ded to be <i>linear</i> if for and $f(x + y) = f(x) + $	all elements x and y f(y). Using <u>this</u> define $f_4(x) = 0$ D. 3 unot be zero) number , 11111111, D. 1,351,111,104 $\circ f(x) = 1$ for $f(x) = 1$	y in the domain and hition of linear, how E. 4 rs that contain no E. 1,422,222,208		
A. 14 7. In some context for all real number many of the follow f_1 A. 0 8. Find the sum of digits other than 0 A. 711,111,104 9. Find $ a - b $ if a A. $\sqrt[3]{2}/4$ 10. Three people (a one is a knave (kn says, "I am a knight correctly identifies	v many lockers are of B. 24 Es, a function is defin rs $a, f(ax) = af(x)$ are ing functions from \mathbb{R} $(x) = 3x$ $f_2(x) = 32$ B. 1 f all base-10 eight-dig 0 or 1 (for example: 1 B. 1,010,101,010 and <i>b</i> are the two re B. $\sqrt[6]{2}/2$ X, Y, Z) are in a room aves always lie), and ht." Y says, "X is telli all three people?	C. 48 ded to be <i>linear</i> if for a $f(x + y) = f(x) + f($	all elements x and y (y). Using this define $f_4(x) = 0$ D. 3 anot be zero) number , 11111111, D. 1,351,111,104 $\circ f)(x) = 1$ for $f(x) =$ D. $\sqrt[8]{2}$ knight (knights alway pies may either lie of s, "I am a spy." Which	y in the domain and aition of linear, how E. 4 rs that contain no E. 1,422,222,208 = $2x^2 + 28x + 91$. E. $\sqrt{2}$ ays tell the truth), or tell the truth). X ch of the following		
A. 14 7. In some context for all real number many of the follow $f_1($ A. 0 8. Find the sum of digits other than 0 A. 711,111,104 9. Find $ a - b $ if a A. $\sqrt[3]{2}/4$ 10. Three people (f_1 one is a knave (kn says, "I am a knight	v many lockers are of B. 24 Es, a function is definition in the function of the function of the functions from \mathbb{R} functions fro	C. 48 ded to be <i>linear</i> if for and $f(x + y) = f(x) + 2 + f(x) + 2 + f(x) + 2 + f(x) + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	all elements x and y (y). Using this define $f_4(x) = 0$ D. 3 anot be zero) number , 11111111, D. 1,351,111,104 $\circ f)(x) = 1$ for $f(x) =$ D. $\sqrt[8]{2}$ knight (knights alway pies may either lie of	y in the domain and hition of linear, how E. 4 rs that contain no E. 1,422,222,208 = $2x^2 + 28x + 91$. E. $\sqrt{2}$ ays tell the truth), or tell the truth). X		

Y is the knave.

Z is the spy.

Y is the spy.

Z is the knave.

Y is the spy. Z is the knight.

11. Let M be the su A1	am of the solutions t B. $-\sqrt{3}/2$	to $e^{-x} \sin x - e^{-x} \cos x$ C. 1	= 0, where $0 \le x < 2$ D. $2/\sqrt{3}$	2π . Find csc M. E. 2		
12. Consider the following function in polar coordinates: $r = \frac{2}{1+0.5\cos\theta}$. Which of the following best describes the graph of this fuction?						
A. Line	B. Two Lines	C. Hyperbola	D. Parabola	E. Ellipse		
13. A biased die is rolled until two 1s are rolled in succession, or until a 1 and then a 2 are rolled in succession (in that order). The die lands on 1 with probability 50%, on 2 with probability 20%, and on something else with probability 30%. What is the probability that the rolling will end with						
successive 1s? A. 1/3	B. 1/2	C. 4/7	D. 2/3	E. 5/7		
14. Find the sum of all complex (both real and nonreal) zeros of $f(x) = \frac{x^3 - \frac{1}{8}}{x - \frac{1}{2}}$.						
A1/2 - i√3/2		C. 0	D. 1/2	E. $1/2 + i\sqrt{3}/2$		
15. How many ord A. 5304	ered lists (<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , B. 5544	<i>e</i> , <i>f</i>) of nonnegative C. 6160	integers satisfy $a + b$ D. 6188	<i>b</i> + <i>c</i> + <i>d</i> + <i>e</i> + <i>f</i> = 12? E. 6468		
16. In parallelogram <i>ABCD</i> , \overline{BC} is extended beyond point <i>C</i> to point <i>E</i> . Points <i>F</i> and <i>G</i> are the points of intersection of \overline{AE} with \overline{BD} and \overline{CD} , respectively. If $FG = 12$ and $EG = 15$, then find AF .						
A. 16	B. 18	C. 20	D. 24	E. 27		
17. If the graphs of the functions $f(x) = b(x - m)^2 + n$ and $g(x) = x - m$ intersect, then what is the greatest possible value of <i>bn</i> ?						
A. 1/4	B. 1/2	C. 3/4	D. 1	E. 2		
18. At a school, 69% of Math Club members are also in the Physics Club, and 79% of Math Club members are also on the Quiz Team. Consider the percentage, P, of Math Club members who are both in the Physics Club and also on the Quiz Team. Based on the given data alone, we can find a percentage M and a percentage N that will guarantee that $M \le P \le N$. What is the sum of the largest possible value for M and the smallest possible value for N?						

19. Some children are playing a game that uses a regular octagon *ABCDEFGH*. There are pennies on some of the sides: 1 on \overline{AB} , \overline{BC} , and \overline{EF} ; 3 on \overline{CD} ; 2 on \overline{DE} ; and none on \overline{FG} , \overline{GH} , and \overline{HA} . Each child, in turn, may add a penny to each of two adjacent sides (for example, a child may add a penny to \overline{AB} and a penny to \overline{BC}), but no other changes are permitted. Their goal is to reach a state where all sides have the same number of pennies. If *S* is the smallest number of turns needed, which inequality does *S* satisy?

D. 127%

E. 148%

A. This is impossible B. $S \le 8$ C. $8 < S \le 15$ D. $15 < S \le 25$ E. 25 < S

C. 117%

A. 52%

B. 90%

20. Five distinct integers *a*, *b*, *c*, *d*, *e* are to be ordered from least to greatest. You are told that *e*, *d*, *c*, *b*, *a* has at least 3 of the 5 values correctly placed; *e*, *b*, *c*, *d*, *a* has an odd number of the values correctly placed; and *a*, *d*, *c*, *b*, *e* is not the solution. You can choose 3 letters and learn their order from least to greatest. Which 3 should you choose to guarantee that the ordering of all 5 numbers can be correctly determined?

A. a, b, d B. a, b, e C. b, c, d D. b, c, e E. c, d, e