CHEM\& 161 PLACEMENT EXAM - PREPARATION PROBLEMS

CHEM\& 161 is a course that requires prerequisite knowledge in math and chemistry. The purpose of the placement exam is to ensure that you are entering at a level that will allow you to succeed in CHEM\& 161 and beyond.

You will be provided a periodic table (similar to the one on the last page). You are permitted to use a calculator, but you must bring one to use. No cell phones will be allowed.

These problems reflect the nature of the exam in terms of content, but the exam will be multiple choice (whereas the problems below are not). The level of difficulty of these problems are similar to those on the placement exam.

For the purposes of practicing, do this exam twice. You should first use it as a guide for studying and reviewing material. Show all of your work and check it using the answer key. Then wait a sufficient period (so as not to remember the answers) and do these problems in "exam mode" - no help, 60 minutes timed, no interruptions. Grade your exam and see where you need to review.

1. Calculate: $\frac{2.5 \times 10^{-2}}{4.8 \times 10^{-7}}$
2. Without a calculator, determine: $\log (1000)=$?

Convert $62 \mu \mathrm{~m}$ into Mm and express as scientific notation.
3. $x^{2}-3.4 x+0.0038=0$. Solve for x.
4. Solve for n_{1} given the following expression: $\frac{x_{1} y_{1}}{n_{1} m_{1}}=\frac{x_{2} y_{2}}{n_{2} m_{2}}$
5. Convert 16.5 miles per gallon into km per liter.
$1 \mathrm{~km}=0.621$ miles
1 gallon = 3.785 liters
6. Convert $2.15 \times 10^{-4} \mathrm{~L}$ into rundlets.
$1 \mathrm{~cm}^{3}=1.47 \times 10^{-5}$ rundlets.
7. Given the following data points, sketch a graph that presents the data. Draw a best fit line and determine the slope and y-intercept for the graph. Then write the equation of the line.
\qquad
14
27
310
8. Report the following measurement with the appropriate number of significant figures.

9. I have 3.4 moles of $\mathrm{Mg}(\mathrm{CN})_{2}$. How many total moles of carbon atoms do I have?
10. Balance the following reaction:
$\mathrm{C}_{8} \mathrm{H}_{18}(/)+\mathrm{O}_{2}(g) \quad-->\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(/)$
11. The density of gold is $19.1 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of 16 liters of solid gold?
12. How many electrons are found in one mole of the ion F^{-}?
13. How many protons are in the radioisotope lodine-131?
14. Name me: $\mathbf{S i O}_{2}$.
15. What is the ground state electron configuration of sodium?
16. What is the volume of a sphere, with a radius of 43 pm ?
17. How much, in total, do 15 atoms of iron weigh, in grams?
18. I have 14 grams of solid magnesium chloride. How many moles of chlorine atoms are contained in this solid?
19. 14.3 grams of natural gas burns in the presence of excess oxygen. How much $\mathrm{CO}_{2}(\underline{q})$ will be produced as a result of this burning? The balanced chemical equation is given below:

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \quad-->\mathrm{CO}_{2}(g)+\mathbf{2} \mathrm{H}_{2} \mathrm{O}(/)
$$

20. A substance X has a mass of 2.50 pounds and a volume of $3000 . \mathrm{mm}^{3}$. What is its density in $\mathrm{g} / \mathrm{cm}^{3}$? (453.6 grams $\left.=1 \mathrm{lb}\right)$
21. What is the volume (mL) of ethanol required for a mass of $7.55 \times 10^{-1} \mathrm{~kg}$? The density of ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$.
22. What is the number of (a) protons, (b) neutrons, and (c) electrons in ${ }_{30}^{65} \mathrm{Zn}^{2+}$?
23. How many molecules of water are present in 1 pound $(453.6 \mathrm{~g})$ of water?
24. How many moles of methane $\left(\mathrm{CH}_{4}\right)$ are required to produce 18 moles of $\mathrm{H}_{2} \mathrm{O}$ based on the following balanced chemical equation for its combustion?

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \quad--->\mathrm{CO}_{2}(g)+\mathbf{2} \mathrm{H}_{2} \mathrm{O}(/)
$$

25. What is the correct chemical formula for an ionic compound that contains only calcium ions $\left(\mathrm{Ca}^{2+}\right)$ and nitrate ions $\left(\mathrm{NO}_{3}^{-}\right)$?
26. How many milligrams is $4 \times 10^{-6} \mathrm{~kg}$?
27. A Toyota Prius has a fuel tank that can hold about 11.9 gallons. How many liters is this? (1 liter = 0.264 gallons)
28. The temperature of a nice warm day in Europe is $30^{\circ} \mathrm{C}$. What is this temperature in ${ }^{\circ} \mathrm{F}$?
29. What is the symbol for an ion with 8 protons, 10 neutrons, and 10 electrons? Use A / Z notation (see \#23).
30. An unknown isotope, X , has the symbol ${ }_{17}^{37} X$. What element is " X "?
31. What is the chemical formula for lead (II) phosphate?
32. If I have 4.567 grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, how many moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is this?
33. Balance the following chemical equation:

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{CuCl}_{2}(\mathrm{aq})--->\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s})
$$

34. What is the average atomic mass of two hypothetical isotopes with the following isotopic masses and natural abundances: isotope 1 (45.967 amu, 36.34\%) and isotope 2 (48.976 amu, 63.66\%)
35. Draw an acceptable Lewis structure for the following molecular (covalent) compounds, including all lone pairs.
(a) water, $\mathrm{H}_{2} \mathrm{O}$
(b) ammonia, NH_{3}
(c) carbon dioxide, CO_{2}
(d) cyanide ion, CN^{-1}
36. How many moles of nitric acid $\left(\mathrm{HNO}_{3}\right)$ is obtained from 25.00 mL of a 3.00 M solution of HNO_{3} ?
37. Convert $4.5 \times 10^{3} \mathrm{in}^{3}$ into cm^{3}. $(1.00 \mathrm{in}=2.54 \mathrm{~cm})$
38. You have a cylinder with a volume of 750 mL that is $30 . \mathrm{cm}$ in height. What is the diameter of its base in cm ? ($1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$)
39. A medical doctor gives the order to administer dopamine at a rate of $3.0 \mathrm{mcg} / \mathrm{kg} \cdot \mathrm{min}$ (mcg is the abbreviation for microgram in a medical context). The dopamine is supplied as a mixture of 400. mg dopamine in 250 mL of a dopamine solution. The patient weighs 73 kg . What is the infusion rate of the dopamine into her body (in units of $\mathrm{mL} /$ hour)?

Periodic Table of the Elements

*Lanthanides	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.907 \end{gathered}$	$\begin{gathered} { }^{60} \\ \mathrm{Nd} 4.24 \end{gathered}$	$\begin{gathered} 61 \\ \mathrm{Pm} \\ (147) \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ \text { S50.35 } \end{gathered}$	$\begin{gathered} \text { 63 } \\ \text { Eu } \\ \text { 151.96 } \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.924 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} \text { 67 } \\ \stackrel{\text { Ho }}{64.930} \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} \mathrm{Tm}_{168.934} \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ 173.04 \end{gathered}$	$\begin{gathered} { }_{71} \\ \stackrel{L}{\mathrm{Lu}} \end{gathered}$
**Actinides	$\begin{gathered} 90 \\ \text { Th } \\ 232.038 \end{gathered}$	91 Pa (231)	$\begin{gathered} 92 \\ \mathrm{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{~Np} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ { }_{(243)}^{95} \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \end{gathered}$	Bk (247)	$\begin{gathered} 98 \\ \text { (249) } \end{gathered}$	$\begin{gathered} \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ (253) \end{gathered}$	$\underset{(256)}{{ }_{\text {Md }}}$	$\begin{gathered} 102 \\ \text { No } \\ (254) \end{gathered}$	$\begin{gathered} 103 \\ \mathrm{LW} \\ (257) \end{gathered}$

1. Calculate: $\frac{2.5 \times 10^{-2}}{4.8 \times 10^{-7}}=5.2 \times 10^{4}$

$$
\text { 2. Without a calculator, determine: } 10^{y}=\frac{1000}{y=3}
$$

3. Convert $62 \mu \mathrm{~m}$ into Mm and express as scientific notation. $62 \mu \mathrm{~m}_{\times} \times \frac{1 \mathrm{~m}}{1 \times 10^{6} \mu \mathrm{~m}} \times \frac{1 \mathrm{Mm}}{1 \times 10^{6} \mathrm{~m}}=3$,

4. Convert $2.15 \times 10^{-4} \mathrm{~L}$ into rundlets. $L \rightarrow_{m} \mathrm{l} \mathrm{cm}^{3} \rightarrow$ rundlet $1 \mathrm{~cm}^{3}=1.47 \times 10^{-5}$ rundles. $2,15 \times 10^{-4} L_{\times} \times \frac{1000 \mathrm{ml}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~m}} \times \frac{1.47 \times 10^{-5} \text { rand let }}{1 \mathrm{~cm}^{3}}=3.16 \times 10^{-6} \mathrm{rundl}$ et
5. Given the following data points, sketch a graph that presents the data. Draw a best fit line and determine the slope and y-intercept for the graph. Then write the equation of the line.

6. Report the following meas ${ }^{x}$ urement with the appropriate number of significant figures.

$$
2.5 \text { units } \cdots \mathrm{ml} \text { ? }
$$

10. I have 3.4 moles of $\mathrm{Mg}(\mathrm{CN})_{2}$. How many total moles of carbon atoms do I have? 6.8 moles C
11. Balance the following reaction:
$2 \mathrm{C}_{8} \mathrm{H}_{18}(l) \quad+25 \mathrm{O}_{2}(g) \quad-->/ 6 \mathrm{CO}_{2}(g) \quad+18 \mathrm{H}_{2} \mathrm{O}(1)$

$$
D=\frac{m}{V} \quad 16 \mathrm{~L}=16000 \mathrm{~m} \left\lvert\,=16000 \mathrm{~cm}^{3} \quad 19.1 \mathrm{~g} / \mathrm{cm}^{3}=\frac{x}{16000 \mathrm{~cm}^{3}} \quad \alpha=3.1 \times 10^{5} \mathrm{~g}\right.
$$

12. The density of gold is $19.1 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of 16 liters of solid gold?
13. How many electrons are found in one mole of the ion $F^{?} \quad F^{-}=10$ electrons each $\times 1 \mathrm{~mol}=10 \mathrm{mo} / E$

$$
10 \mathrm{~mol} E^{-} \times \frac{6.022 \times 10^{23} \text { thing } 5}{1 \mathrm{~mol}}=\frac{6.022 \times 10^{24} \mathrm{elec}}{}
$$

14. How many protons are in the radioisotope lodine-131?

$$
\text { Iodine }=53 \text { protang, always }
$$

15. Name me: SiO_{2}.
Silican dioxide
16. What is the ground state electron configuration of sodium? $1 s^{2} 2 s^{2} 2 p^{6} 35^{1}$
17. What is the volume of a sphere, with a radius of 43 -pm?

$$
V_{0}=4 / 3 \pi r^{3}=3,3 \times 10^{5} \mathrm{pm}^{3}
$$

18. How much in total, do 15 atoms of iron weigh in grams? atoms \rightarrow mol $\rightarrow \mathrm{g} 4 \mathrm{~s}, \mathrm{~s}$, is " $/ 5$ "
19. I have 14 grams of solid magnesium chloride. How many moles of chlorine atoms are contained in this solid? $14 \mathrm{~g} \mathrm{NaCl} \times \frac{\mathrm{lmol} \mathrm{NaCl}}{58.44 \mathrm{~g}} \times \frac{\mathrm{lmolCl}}{\mathrm{mmolNaCl}}=0,24 \mathrm{mal} \mathrm{Cl}-$
20. 14.3 grams of natural gas burns in the presence of excess oxygen. How much $\mathrm{CO}_{2}(\underline{q})$ will be produced as a result of this burning? The balanced chemical equation is given below:

$$
14.3 \mathrm{~g} \times \frac{\mathrm{Imal} \mathrm{CH}_{4}}{16.04 \mathrm{~g}}=0.891 \mathrm{~mol}_{\mathrm{CH}}^{4} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol}^{2} \mathrm{CH}_{4}}=0.891 \mathrm{mo} / \mathrm{CO}_{2}
$$

$$
0.891 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{44.0 \mathrm{Ig} \mathrm{Ca}_{2}}{1 \mathrm{mal}}=\sqrt{39.2 \mathrm{~g} \mathrm{Ca}_{4}}
$$

21. A substance X has a mass of 2.50 pounds and a volume of $3000 . \mathrm{mm}^{3}$. What is its density in $\mathrm{g} / \mathrm{cm}^{3} ?(453.6$ grams $=1 \mathrm{lb})$
(I)
(3)

$$
d=\frac{11349}{3.000}=378 \mathrm{~g}_{\mathrm{cm}}{ }^{3}
$$

22. What is the volume (mL) of ethanol required for a mass of $7.55 \times 10^{-1} \mathrm{~kg}$? The density of ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$.

$$
d=\frac{m}{V} \text { so } \quad V=\frac{m}{d}=\frac{755 \mathrm{~g}}{0.789 \mathrm{~g} / \mathrm{ml}}=957 \mathrm{ml}
$$

$$
>755 \mathrm{~g}
$$

23. What is the number of (a) protons, (b) neutrons, and (c) electrons in ${ }_{30}^{65} \mathrm{Zn}^{2+}$?
\#p+n

(a) 30
(c) 28

$$
453.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times\left(\frac{1 \text { mole } \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H} \mathrm{H} O}\right) \times\left(\frac{6.022 \times 10^{23}}{1 \text { mole } \mathrm{H}_{2} \mathrm{O}}\right)=\left(\begin{array}{l}
1.516 \times 10^{25} \\
\text { moleculso }
\end{array}\right.
$$

25. How many moles of methane $\left(\mathrm{CH}_{4}\right)$ are required to produce 18 moles of $\mathrm{H}_{2} \mathrm{O}$ based on the (or 2×10^{25}) following balanced chemical equation for its combustion?
26. What is the correct chemical formula for an ionic compound that contains only calcium ions

1:2 raho $\left(\mathrm{Ca}^{2+}\right)$ and nitrate ions $\left(\mathrm{NO}_{3}{ }^{-}\right)$?

$$
\underset{\leftrightarrow}{\text { badance }}\left\{\mathrm{Ca}^{2+}\left(\mathrm{NO}_{3}\right)^{-1}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right.
$$

27. How many milligrams is $4 \times 10^{-6} \mathrm{~kg}$?

$$
4 . \times 10^{-6} \mathrm{~kg} \times\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right) \times\left(\frac{1000 \mathrm{mg}}{1 g}\right)=4 \mathrm{mg}
$$

28. A Toyota Prius has a fuel tank that can hold about 11.9 gallons. How many liters is this? (1 liter $=$ 0.264 gallons)

$$
11.9 \mathrm{gal} \times\left(\frac{1 \text { lita }}{0.264 \mathrm{gal}}\right)=45.1 \text { liten }
$$

$$
\begin{aligned}
& \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow-->\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(/) \\
& 18 \text { moles } \mathrm{H}_{2} \mathrm{O} \times\left(\frac{1 \text { mole } \mathrm{CH}_{4}}{2 \operatorname{molm~H}_{2} \mathrm{O}}\right)=9 \text { mobechy }
\end{aligned}
$$

29. The temperature of a nice warm day in Europe is $30^{\circ} \mathrm{C}$. What is this temperature in ${ }^{\circ} \mathrm{F}$?

$$
\text { of }=9 / 5{ }^{\circ} \mathrm{C}+32=9 / 5\left(30^{\circ} \mathrm{C}\right)+32=86^{\circ} \mathrm{F}
$$

30. What is the symbol for an ion with 8 protons, 10 neutrons, and 10 electrons? Use A / Z notation (see \#23).

$$
\begin{gathered}
18 \\
8
\end{gathered} 0^{2}
$$

31. An unknown isotope, X, has the symbol $37 x$. What element is " X "?

$$
\text { atomic } \#=\# \text { of pitons }
$$

32. What is the chemical formula for lead (II) phosphate?

$$
\mathrm{Pb}^{2+} \mathrm{PO}_{4}^{3} \quad \rightarrow \quad \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

33. If I have 4.567 grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, how many moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is this?

$$
4.567 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times\left(\frac{1 \text { mole }}{105,99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}\right)=\begin{gathered}
0.04309 \text { moles } \\
\mathrm{Na}_{2} \mathrm{CO}_{3}
\end{gathered}
$$

34. Balance the following chemical equation:

$$
\frac{2}{\uparrow} \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{CuCl}_{2}(\mathrm{aq})-->{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\frac{2}{\uparrow} \mathrm{AgCl}(\mathrm{~s})}_{\uparrow}^{\uparrow}
$$

35. What is the average atomic mass of two hypothetical isotopes with the following isotopic masses and natural abundances: isotope 1 ($45.967 \mathrm{amu}, 36.34 \%$) and isotope 2 (48.976 amu ,

$$
\begin{aligned}
&03.66 \%)(45.967 a \mathrm{amu})+0.6366(48.976 \text { man }) \\
&=(16.70+31.178) \text { amu } \\
&=(47.88 \text { amu }
\end{aligned}
$$

36. Draw an acceptable Lewis structure for the following molecular (covalent) compounds, including
all lone pairs.
(a) water, $\mathrm{H}_{2} \mathrm{O}$
(b) ammonia, NH_{3}
(c) carbon dioxide, CO_{2}
(d) cyanide ion, CN^{-1}

$$
\begin{array}{cc}
\ddot{O}=C=\ddot{O} & (: C \equiv N:)^{-} \\
\left(\begin{array}{c}
\text { not as good: }
\end{array}\right) & \text { or } \quad \Theta \quad \because \equiv N:
\end{array}
$$

37. How many moles of nitric acid is obtained from 25.00 mL of $(3.00 \mathrm{M}) \mathrm{HNO}_{3}$?

$$
(0.02500 甘) \times\left(\frac{3.00 \text { moles }}{1 X}\right)=0.0750 \text { moles } \mathrm{HNO}_{3}
$$

38. Convert $4.5 \times 10^{3} \mathrm{in}^{3}$ into cm^{3}. $(2.54 \mathrm{~cm}=1.00 \mathrm{in})$

$$
4.5 \times 10^{3} \mathrm{in}^{3} \times\left(\frac{2.54^{3} \mathrm{~cm}^{3}}{1^{3} \mathrm{in}^{3}}\right)=7.4 \times 10^{4} \mathrm{~cm}^{3}
$$

39. You have a cylinder with a volume of 750 mL that is $30 . \mathrm{cm}$ in height. What is the diameter of its base in cm ?

$$
V=A \cdot h \quad A=V / h=750 \mathrm{~cm}^{3} / 30 \cdot \mathrm{~cm}=25 \mathrm{~cm}^{2}
$$

$$
A=\pi r^{2}
$$

$$
r=2.82
$$

$$
d=2 r=5.6 \mathrm{~cm}
$$

40. A medical doctor gives the order to administer dopamine at a rate of $3.0 \mathrm{mcg} / \mathrm{kg} \cdot \mathrm{min}(\mathrm{mcg}$ is the abbreviation for microgram in a medical context). The dopamine is supplied as a mixture of 400 mg dopamine in $250 . \mathrm{mL}$. of a dopamine solution. The patient weighs 73 kg . What is the infusion rate of the dopamine into her body (in units of $\mathrm{mL} /$ hour)?
Info:

$$
\begin{aligned}
& \rightarrow 73 \mathrm{~kg} \\
& \rightarrow 400 \cdot \mathrm{mg} / 250 . \mathrm{ml} \\
& \rightarrow \frac{3.0 \mathrm{mcg}}{\mathrm{~kg} \cdot \mathrm{~min}} \\
& 73 \mathrm{~kg}\left(\frac{3.0 \mathrm{mgg}}{1 \mathrm{~kg} \cdot \mathrm{ming}}\right)\left(\frac{1 \mathrm{mg}}{1000 \mathrm{mcg}}\right)\left(\frac{250 \mathrm{ml}}{400 \mathrm{mg}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{hr}}\right) \\
&=8.2 \mathrm{ml} / \mathrm{hr}
\end{aligned}
$$

