Name	Section
Date Due	

Molecular Models

Use the following color codes as you build your models.

Black

Carbon

White

Hydrogen (If you use the school kits; use yellow)

Green

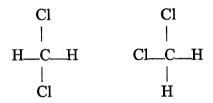
Chlorine

Red

Oxygen

Part I

METHANE


Draw a 3-D sketch.

- 1. Build a model of methane, CH4.
- a. How many atoms are in one plane?
- b. How many atoms are out of plane? Which direction to these point to?
- c. Can you rotate around a single bond?
- d. What is its molecular geometry?
- e. What is the hybridization of the C atom?
- f. What are the bond angles?
- g. Are the C-H bonds polar?
- h. Does this molecule have a dipole?

- 2. Replace one of the hydrogens with a chlorine.
- a. Does it matter which hydrogen is replaced with chlorine?

We call these equivalent hydrogens.

- b. Does this molecule have a dipole?
- 3. Replace a second hydrogen atom with chlorine to make dichloromethane (methylene chloride). Convince yourself that the following two formulas represent the same three-dimensional structure.

- b. Does this molecule have a dipole?
- 4. Replace another hydrogen to make CHCl₃, trichloromethane (chloroform).
- b. Does this molecule have a dipole?
- 5. Finally, make tetrachloromethane (carbon tetrachloride), CCl4.
- b. Does this molecule have a dipole?

ETHANE

1. Make a model of ethane, C₂H₆, from your model of CH₄ by replacing one of the hydrogens with a -CH₃ unit; the -CH₃ unit is called the **methyl** group. Note that the hydrogens of ethane are all equivalent.

2. Replace one of the hydrogens in you ethane model with chlorine to make C₂H₅Cl.

Does it matter which hydrogen you replace?

- 3. Replace another hydrogen from C₂H₅Cl with a chlorine atom to yield C₂H₄Cl₂. You should be able to construct two <u>different</u> molecules. These molecules are called **isomers**. Compounds that have the same molecular formula but different structural formulas are called **isomers**.
- a. Name these compounds.
- b. Do these molecules have a dipole?

PROPANE

- 1. From your model of ethane, construct a molecular model of propane, C₃H₈, by replacing one of the hydrogen atoms with a methyl group (-CH₃).
- 2. Replace one of the hydrogens of propane with chlorine. You should be able to construct two isomers. Name these compounds.
- 3. Replace another hydrogen with chlorine to produce 4 isomers of C₃H₆Cl₂. Name these compounds.

BUTANE

- 1. From your model of propane, C₃H₈, construct two isomers of butane, C₄H₁₀. Name these.
- 2. Construct all four isomers of C4H9Cl by replacing a hydrogen on butane with a chlorine. Name them,

PENTANE

- 1. Use your model kit to determine how many isomers there are for the formula, C5H₁₂? Draw their skeletons and name them.
- 2. Replace one hydrogen from pentane to make C₅H₁₁Cl. How many isomers can you construct? Draw and name all isomers.

3. Use a model kit to determine how many isomers there are for C_6H_{14} . Draw and name each.

ALKENES

- 1. Use two of the longer flexible connectors to make a double bond. (If you are using the school kits, use 2 springs for a double bond). Construct a model of ethene (ethylene), C₂H₄. Note the rigidity of the molecule.
- a. Can you rotate around a double bond?
- b. How many atoms are in one plane?
- c. What is its molecular geometry?
- d. What is the hybridization of the C atom?
- e. What are the bond angles?
- 2. How many structures are there corresponding to the formula C_2H_3C1 ?
- 3a. How many isomers are there corresponding to the formula C₂H₂Cl₂?
- b. Identify which are cis and trans.
- c. Identify the constitutional isomers.
- d. Which structures have a dipole?

ALKYNES

- 1. Construct a model of acetylene (ethyne), C₂H₂. (There is a triple bond between the carbons.)
- a. Can you rotate around a triple bond?
- b. What is the hybridization of the C atom?
- c. What is its molecular geometry?
- d. What are the bond angles?

2. How many different structures are there if one of the hydrogens is replaced with a chlorine? Are cis-trans isomers possible? Why or why not?

CYCLOALKANES

Cycloalkanes corresponding to the formula, C_nH_{2n} exist. Try to construct (but do not force too much in your attempt) models of: cyclopropane, C₃H₆; cyclobutane, C₄H₈; cyclopentane, C₅H₁₀; and cyclohexane, C₆H₁₂.

- a. What does this tell you about the ring strain in these molecules?
- b. What are the bond angles?
- 2. Construct a model of benzene, C₆H₆, using alternating single and double bonds.
- a. What is its molecular geometry?
- b. What is the hybridization of the C atom?
- c. What are the bond angles?
- d. Comparing benzene to cyclohexane, which is flat and rigid?
- 3. Make a model of dichlorocyclohexane, C₆H₁₀Cl₂. How many isomers are there?
- b. Is cis-trans isomerism possible?
- c. Name all structures.

MORE ISOMERS

1. Construct models for two isomers for C₂H₆O. One of these isomers has an (-OH) group attached to the second carbon. This isomer is an **alcohol**. The other isomer places the oxygen between the two carbons. This isomer is an **ether**. These isomers have different **functional** groups. Note: The oxygen is bonded to the carbon atom(s) with single bonds.

2. Construct models for two isomers of C₃H₆O. Each will have a double bond between the oxygen atom and a carbon atom.

If the carbon (bonded to the oxygen) is at the end of the molecule, the **functional** group is called an **aldehyde**. If the carbon (bonded to the oxygen) is in within the carbon chain, the **functional** group is called a **ketone**.