NOMENCLATURE AND WRITING FORMULAS

PART I--FORMULAS AND NOMENCLATURE OF IONIC COMPOUND Composed of Cations and Anions.

Types of Cations (positive ions):

A. Metals lose electrons to form positive ions. These ions are called **monoatomic** because they are made up of only **ONE** ion. They can be of two types: <u>Constant charge</u> or <u>Variable charge</u>.

<u>Constant charge</u>: Group IA, IIA, IIIA A few transition metals Ag⁺, Zn²⁺ and Cd²⁺

The names of these ions are the same as the name of the atom

Examples: Na^+ = sodium ion Zn^{2+} = zinc ion

Variable charge:

Most transition metals (except for silver, zinc and cadmium) A few representative metals: Sn, Bi, and Pb

Fe ²⁺	Iron (II)	Fe ³ +	Iron (III)
Cu+	Copper (I)	Cu ²⁺	Copper (II)
Sn ⁴⁺	Tin(IV)	Sn ²⁺	Tin(II)

B. A polyatomic ion-- Consists of more than one atom. The most common positive one is ammonium, NH_4^+

Types of Anions (negative ions):

A. Non metals gain electrons to form negative ions. These ions are called **monoatomic** because they are made up of only **ONE** ion. The names of these ions end in -ide.

Examples:	S2-	sulfide	Cl1-	chloride
	N3-	nitride	O ²⁻	oxide

B. **A polyatomic ion**-- Consists of more than one atom. The names of polyatomic anions often end in -ate or -ite

Examples:	NO3 ^{1 -}	nitrate	NO2 ¹⁻	nitrite
	SO4 ²⁻	sulfate	SO3 ²⁻	sulfite

Two	important polyatomic io	ons end in -ide	
OH ¹	 hydroxide 	CN ¹⁻	cyanide

A compound is usually IONIC if it:

Contains a cation and an anion--often a metal and a nonmetal Hint: Formula begins with a **metal** or **NH4+**

Ionic - To write the formula

- 1. Write the symbol of the cation with a SUPERSCRIPT charge.
- 2. Write the symbol of the anion with a SUPERSCRIPT charge
- 3. If the charges are NOT balanced, CRISS-CROSS to find the number of each atom necessary to balance the charges.
- 4. Use a parenthesis if more than ONE polyatomic ion is necessary.

Examples:	Aluminum oxide	AI ³⁺ O ²⁻	Al ₂ O ₃
	Iron (II) phosphide	Fe ²⁺ P ³⁻	Fe ₃ P ₂
	Calcium nitrate	Ca ² + NO ₃ 1-	Ca(NO ₃) ₂
	Copper(I) carbonate	Cu ¹⁺ CO ₃ 2 -	Cu ₂ CO ₃
	Barium oxide	Ba ²⁺ O ²⁻	BaO
	Notice: the charges are	e already balanced so	o the ratio is 1:1
	Calcium hydroxide	Ca ²⁺ OH ¹⁻	Ca(OH) ₂

Ionic - To write the name

- 1. Write the name of the cation. If the cation has a variable charge, determine the Roman Numeral.
- 2. Follow with the name of the anion

Examples:	Na ₂ O	Sodium oxide
	Cr ₂ S ₃	(Group IAno Roman Numeral needed) Chromium(III)sulfide
	BaSO ₄	(Most transition metals need Roman Numerals) Barium sulfate
	Pb(OH) ₂	(Group IIAno Roman Numeral needed) Lead(II)hydroxide
	Cu ₂ CO ₃	(Pb is a main group metal with variable charge.) Copper(I)carbonate
	FeSO ₄	(Most transition metals need Roman Numerals) Iron(II)sulfate
		(Most transition metals need Roman Numerals)

Na	ame
1.40	

_____ Section _____ Date_____

PRACTICE PROBLEMS FOR IONIC COMPOUNDS

tin(II)phosphate		
zinc oxide		
barium sulfate		
lithium nitride		
silver fluoride		
barium hydroxide		
lead(II)iodide		
mercury(II)chloride		
cobalt(II)nitrate		
lithium bromide		
AlBr ₃		
FeS	 	
(NH ₄) ₃ PO ₄	 	
Hg(NO ₃) ₂	 	
Ag ₂ S	 	
KMnO ₄	 	
MgCl ₂	 	
Cr ₂ O ₃	 	
K ₃ P	 	
TiCl ₂	 	

PART II--FORMULAS AND NOMENCLATURE OF COVALENT COMPOUNDS

A compound is usually COVALENT (MOLECULAR) if there is...

- 1. A nonmetal bonded to a nonmetal
- 2. A metalloid bonded to a nonmetal
- 1. To name, use Greek prefixes to indicate the number of atoms present in the compound. Prefixes are listed in your text book. Note: Mono is usually omitted for the first element.

Examples:	CO ₂	carbon dioxide
	N ₂ O ₃	dinitrogen trioxide
	CO	carbon monoxide

2. To write the formula, use subscripts to identify the number of atoms present.

Examples:	dinitrogen tetraoxide	N ₂ O ₄
	carbon tetrachloride	CCl ₄

Some other traditional or trivial names you need to memorize.

water	H ₂ O
ammonia	NH3
methane	CH_4

PRACTICE PROBLEMS FOR COVALENT COMPOUNDS:

Write the names of the following Binary covalent compounds: (**Remember** to use prefixes here.)

SO ₂	PCl3
NO ₂	H ₂ S
SF ₆	CBr4
Write the formulas for the following:	
Phorphorus pentachloride	lodine trichloride
Dinitrogen tetraoxide	diarsenic pentasulfide

PART III--FORMULAS AND NOMENCLATURE OF ACIDS

A compound is usually an ACID if it.... begins with the element (H) in its chemical formula (NOTE: This is not true for carboxylic acids, which usually have H at the end.)

1. Binary Many of these acids are formed by bubbling a gas through water. In the gas state they are named as covalent compounds as discussed previously.

However, when these gases are bubbled through water they become ACIDS. To name them, start the name with HYDRO- and end the name with -IC.

HCl _(q) hydrogen chloride		HCI _(aq)	hydrochloric acid
$H_2S_{(g)}$	dihydrogen sulfide	H ₂ S _(aq)	hydrosulfuric acid
	or hydrogen sulfide		
HBr _(g) hydrogen bromide		HBr _(aq)	hydrobromic acid

If the (g) or the (aq) are omitted, it would be correct to use either name.

To write the formula from the name, notice the halogens can only form one bond, so they will require only one hydrogen. Sulfur forms two bonds, so it will require two hydrogens.

NOTE: The prefix (HYDRO-) followed by (-IC) indicates the acid contains only two elements, one of which is hydrogen. The acid is called a binary acid.

1. Oxyacids (ALWAYS NAMED AS ACIDS)

Some of these acids are produced by bubbling a substance called an acid anhydride, such as $SO_{3(g)}$, through water.The gas reacts with water to make sulfuric acid, $H_2SO_{4(aq)}$. **NOTE: "hydro" is NOT used in oxyacids.**

To name: Find the polyatomic ion associated with the acid. If the polyatomic ion ends in -ATE, the acid ends in -IC. If the polyatomic ion ends in -ITE, the acid ends in -OUS.

Examples:	H ₂ SO ₄	derived from sulf <u>ate</u> , the acid is named sulfur <u>ic</u> acid
		It is <u>NEVER</u> named hydrogen sulfate.
	HNO ₂	derived from nitr <u>ite</u> , the acid is named nitr <u>ous</u> acid
		It is NEVER named hydrogen nitrite.

To write the formula from the name:

<u>Acetic acid</u> The formula must begin with H because it is an acid. It must be derived from the acetATE ion. Because the acetate ion has a negative one charge, it will require one hydrogen.

Answer: $HC_2H_3O_2$ or CH_3COOH (it's a carboxylic acid)

<u>Sulfurous acid</u> The acid must be derived from the sulfITE ion. Because the sulfite ion has a negative two charge, it will require two hydrogens.

Answer: H₂SO₃

Practice problems for acids

Name the following:

HNO3	HF(aq)	H ₂ CO ₃
H2C2O4	HF(g)	CH₃COOH

Write the formula for each compound:

hydrogen sulfide	hydrosulfuric acid
sulfuric acid	sulfurous acid
hydrogen chloride	hydrochloric acid
perchloric acid	chloric acid
chlorous acid	hypochlorous acid
nitrous acid	phosphoric acid